Obligatory Problems MM513

N.J. Nielsen

Problem 1

Let (Ω, \mathcal{F}, P) be a probability space and let $\left(\mathcal{F}_{n}\right)$ be a filtration of \mathcal{F}. Further let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of s.v.'s so that X_{n} is \mathcal{F}_{n}-measurable for all $n \geq 0$ and let $\left(C_{n}\right)_{n \geq 1}$ be a sequence of sv.'s so that C_{n} is \mathcal{F}_{n-1} for all $n \geq 1$ and so that there is a constant K so that $0 \leq C_{n} \leq K$ a.s. for all $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$ we put

$$
Y_{n}=\sum_{k=1}^{n} C_{k}\left(X_{k}-X_{k-1}\right), \quad Y_{0}=0
$$

(i) Prove that $\left(Y_{n}\right)$ is a martingale, if $\left(X_{n}\right)$ is a martingale, a submartingale, if $\left(X_{n}\right)$ is a submartingale, and a supermartingale, if $\left(X_{n}\right)$ is a supermartingale.

Let now T be a stopping time so that $P(T<\infty)=1)$.
(ii) Prove that the set $(T<n) \in \mathcal{F}_{n-1}$ for all $n \geq 1$ and conclude that $1_{(T \geq n)}$ is $\mathcal{F}_{n-1^{-}}$ measurable for all $n \geq 1$.
(iii) Prove that for all $n \geq 1$ we have

$$
X_{T \wedge n}-X_{0}=\sum_{k=1}^{n} 1_{(T \geq k)}\left(X_{k}-X_{k-1}\right) .
$$

Conclude from (i) that $\left(X_{T \wedge n}\right)$ is a martingale (relative to $\left(\mathcal{F}_{n}\right)$), if $\left(X_{n}\right)$ is a martingale, a submartingale, if $\left(X_{n}\right)$ is a submartingale, and a supermartingale, if $\left(X_{n}\right)$ is a supermartingale.
iv) Prove that for almost all $\omega \in \Omega$ we have that $T(\omega) \wedge n=T(\omega)$ for n sufficiently large and hence also $X_{T \wedge n}(\omega)=X_{T}(\omega)$ for n sufficienly large.

In particular $X_{T}(\omega)=\lim _{n} X_{T \wedge n}(\omega)$ for almost all $\omega \in \Omega$.
(v) Assume now that (X_{n}) is a supermartingale with $X_{n} \geq 0$ a.s for all $n \geq 0$. Prove that

$$
E\left(X_{T}\right) \leq E\left(X_{0}\right)
$$

Problem 2, the mother of all martingales

We consider the probality space $([0,1], \mathcal{B}, P)$ where P denotes the Lebesgue measure on $[0,1]$ and \mathcal{B} denotes the σ-algebra of all Borel subsets of $[0,1]$. We define a sequence $\left(h_{n}\right)$ of measurable functions by:

$$
h_{1}(t)=1 \quad \text { for all } t \in[0,1] .
$$

For all $k \in \mathbb{N} \cup\{0\}$ og $1 \leq \ell \leq 2^{k}$ we put:

$$
h_{2^{k}+\ell}(t)=\left\{\begin{array}{rll}
1 & \text { if } & t \in\left[(2 \ell-2) 2^{-k-1},(2 \ell-1) 2^{-k-1}[\right. \\
-1 & \text { if } & t \in\left[(2 \ell-1) 2^{-k-1}, 2 \ell 2^{-k-1}[\right. \\
0 & \text { otherwise. } &
\end{array}\right\}
$$

$\left(h_{n}\right)$ is called the Haar system on $[0,1]$.

1. Draw the graphs of the first 5 Haar functions.
2. Let for all $n \in \mathbb{N} \mathcal{F}_{n}=\sigma\left\{h_{m} \mid 1 \leq m \leq n\right\}$. Recall that the atoms in \mathcal{F}_{n} are precisely the sets in \mathcal{F}_{n} on which all the h_{m} 's are constant for $1 \leq m \leq n$. Let now $n \in \mathbb{N}, k \in \mathbb{N} \cup\{0\}$ with $2^{k}<n \leq 2^{k+1}$ and $B \in \mathcal{F}_{n}$. Prove that B is an atom in \mathcal{F}_{n} if and only if: Either there is an m with $2^{k}<m \leq n$ so that

$$
B=\left\{t \in[0,1] \mid h_{m}(t)=1\right\}
$$

or

$$
B=\left\{t \in[0,1] \mid h_{m}(t)=-1\right\}
$$

or in the case where $n<2^{k+1}: B$ is an atom in $\mathcal{F}_{2^{k}}$ and $B \subseteq \cap_{m=2^{k}+1}^{n} h_{m}^{-1}(0)$.
This desciption is of course modulo zero-sets.
3. Show that if $m<n$ and $B \in \mathcal{F}_{m}$ is an atom, then

$$
\int_{B} h_{n}(t) d t=0
$$

4. Let $\left(t_{n}\right) \subseteq \mathbb{R}$ and define $X_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
X_{n}=\sum_{m=1}^{n} t_{m} h_{m} \quad \text { for all } n \in \mathbb{N}
$$

Show that $\left(X_{n}\right)$ is a martingale. Here it is a good idea to consult exercise 2 in Exercises for MM513.
For every $n \in \mathbb{N}$ we put

$$
A_{n}=\left\{t \in[0,1] \mid h_{n}(t)=1\right\} \cup\left\{t \in[0,1] \mid h_{n}(t)=-1\right\} .
$$

5. Let $n \in \mathbb{N}, f \in L_{1}([0,1])$. Show that if either $B=\left\{t \in[0,1] \mid h_{n+1}(t)=1\right\}$ or $B=\left\{t \in[0,1] \mid h_{n+1}(t)=-1\right\}$, then

$$
\int_{B} E\left(f \mid \mathcal{F}_{n}\right)(t) d t=\frac{1}{2} \int_{A_{n+1}} f(t) d t
$$

Hint: Use that an \mathcal{F}_{n}-measurable stochastic variable is constant on an atom in \mathcal{F}_{n}.
Let now $f \in L_{1}([0,1])$ be fixed in the rest of this problem. For every $n \in \mathbb{N}$ we put

$$
t_{n}=P\left(A_{n}\right)^{-1} \int_{A_{n}} f(t) h_{n}(t) d t
$$

By induction we want to prove that:

$$
\begin{equation*}
E\left(f \mid \mathcal{F}_{n}\right)=\sum_{m=1}^{n} t_{m} h_{m} \quad \text { for all } n \in \mathbb{N} \tag{0.1}
\end{equation*}
$$

but we do it stepwise.
6. To prove (0.1) it is enough to prove that for all $n \in \mathbb{N}$ and every atom $B \in \mathcal{F}_{n}$ we have:

$$
\begin{equation*}
\int_{B} f(t) d t=\int_{B} \sum_{m=1}^{n} t_{n} h_{m}(t) d t \tag{0.2}
\end{equation*}
$$

Why?
7. Prove (0.1) by induction. Hint: If (0.1) is proved for n, we can write:

$$
\sum_{m=1}^{n+1} t_{m} h_{m}=E\left(f \mid \mathcal{F}_{n}\right)+t_{n+1} h_{n+1}
$$

Now use 5. and (0.2) in a suitable manner.
8. Prove that

$$
f=\sum_{m=1}^{\infty} t_{m} h_{m}
$$

where the convergence is in $L_{1}[0,1]$.
Hint: Let \mathcal{B} be the Borel algebra on $[0,1]$ and \mathcal{F}_{∞} as in the notes. Without proof you may use that $\mathcal{B}=\mathcal{F}_{\infty}$.

You have now proved that $\left(h_{n}\right)$ is a basis for $L_{1}([0,1])$ in the sense of Banach spaces..

Problem 3

Let (Ω, \mathcal{F}, P) be a probability space and let $\left(Y_{n}\right)$ be a sequence of independent stochastic variables so that $E\left(Y_{n}\right)=1$ og $Y_{n}>0$ n.s. for alle $n \in \mathbb{N}$. Put $\mathcal{F}_{n}=\sigma\left\{Y_{j} \mid 1 \leq j \leq n\right\}$ and $X_{n}=\prod_{j=1}^{n} Y_{j}$.
(i) Prove that $\left(X_{n}\right)$ is a martingale and show that there is a stochastic variable X so that $X_{n} \rightarrow X$ n.s.
(ii) Show that $E(X) \leq \lim _{n} \prod_{j=1}^{n} E\left(Y_{j}\right)=\prod_{j=1}^{\infty} E\left(Y_{j}\right)=1$.
(iii) Assume further that we have:

$$
P\left(Y_{n}=\frac{1}{2}\right)=P\left(Y_{n}=\frac{3}{2}\right)=\frac{1}{2}
$$

for alle $n \in \mathbb{N}$ so that the Y_{n} 's are identically distributed. Show that $X=0$ n.s. Hint: Compute $E\left(\log Y_{n}\right)$ and realize that $E\left(\log Y_{n}\right)<0$. Now apply the Strong Law of Large numbers (either Theorem 5.3.1 or Theorem 5.4.4 in the book; the latter will be proved in week 19) on the the sequence $\left(\log Y_{n}\right)$.

Hence it can happen that the inequality in (ii) is sharp.
(iv) Show that under the conditions in (iii) the sequence $\left(X_{n}\right)$ does not converge to X in $L_{1}(P)$.

Problem 4

$\operatorname{Let}(\Omega, \mathcal{F}, P)$ be a probability space and let $\left(X_{n}\right)_{n \geq 0} \subseteq L_{2}(P)$ be a martingale (relative to some filtration $\left(\mathcal{F}_{n}\right)$ of $\left.\mathcal{F}\right)$ with $X_{0}=0$.
(i) Prove that $\left(X_{n}^{2}\right)$ is a submartingale and conclude that there exists a martingale $\left(M_{n}\right)$ and a non-decreasing process $\left(A_{n}\right)$ so that $M_{0}=A_{0}=0, A_{n}$ is \mathcal{F}_{n-1}-measurable for all $n \geq 1$, and

$$
X_{n}^{2}=M_{n}+A_{n} \quad \text { for all } n \geq 0
$$

Put $A_{\infty}=\lim _{n} A_{n}$ and prove that $E\left(X_{n}^{2}\right)=E\left(A_{n}\right)$ and that $E\left(X_{n}^{2}\right) \rightarrow E\left(A_{\infty}\right)$ for $n \rightarrow \infty$.

Conclude that $\left(X_{n}\right)$ is bounded in $L_{2}(P)$ if and only if $E\left(A_{\infty}\right)<\infty$.
From now on we assume that $E\left(A_{\infty}\right)<\infty$.
(ii) Prove that $\left(X_{n}\right)$ is uniformly integrable and that there is an $X \in L_{1}(P)$ so that $X=$ $\lim _{n} X_{n}$ a.s. and in $L_{1}(P)$.
(iii) Prove that for all $m \leq n$ we have that

$$
E\left(\left(X_{n}-X_{m}\right)^{2} \mid \mathcal{F}_{m}\right)=E\left(X_{n}^{2} \mid \mathcal{F}_{m}\right)-X_{m}^{2}
$$

and conclude that

$$
E\left(\left(X_{n}-X_{m}\right)^{2}\right)=E\left(X_{n}^{2}\right)-E\left(X_{m}^{2}\right) .
$$

(iv) Let now m be fixed for a moment. Use (i) and (ii) to prove that

$$
\begin{equation*}
E\left(\left(X-X_{m}\right)^{2}\right) \leq E\left(A_{\infty}\right)-E\left(X_{m}^{2}\right) \tag{0.3}
\end{equation*}
$$

and conclude that $X \in L_{2}(P)$.
Finally use (0.3) to prove that $X_{m} \rightarrow X$ in $L_{2}(P)$

