Obligatory Problems MM513

N.J. Nielsen

Problem 1

Let (Ω, \mathcal{F}, P) be a probability space and let (\mathcal{F}_n) be a filtration of \mathcal{F} . Further let $(X_n)_{n\geq 0}$ be a sequence of s.v.'s so that X_n is \mathcal{F}_n -measurable for all $n \geq 0$ and let $(C_n)_{n\geq 1}$ be a sequence of s.v.'s so that C_n is \mathcal{F}_{n-1} for all $n \geq 1$ and so that there is a constant K so that $0 \leq C_n \leq K$ a.s. for all $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$ we put

$$Y_n = \sum_{k=1}^n C_k (X_k - X_{k-1}), \quad Y_0 = 0.$$

(i) Prove that (Y_n) is a martingale, if (X_n) is a martingale, a submartingale, if (X_n) is a submartingale, and a supermartingale, if (X_n) is a supermartingale.

Let now T be a stopping time so that $P(T < \infty) = 1$).

- (ii) Prove that the set $(T < n) \in \mathcal{F}_{n-1}$ for all $n \ge 1$ and conclude that $1_{(T \ge n)}$ is \mathcal{F}_{n-1} -measurable for all $n \ge 1$.
- (iii) Prove that for all $n \ge 1$ we have

$$X_{T \wedge n} - X_0 = \sum_{k=1}^n \mathbb{1}_{(T \ge k)} (X_k - X_{k-1}).$$

Conclude from (i) that $(X_{T \wedge n})$ is a martingale (relative to (\mathcal{F}_n)), if (X_n) is a martingale, a submartingale, if (X_n) is a submartingale, and a supermartingale, if (X_n) is a supermartingale.

iv) Prove that for almost all $\omega \in \Omega$ we have that $T(\omega) \wedge n = T(\omega)$ for n sufficiently large and hence also $X_{T \wedge n}(\omega) = X_T(\omega)$ for n sufficiently large.

In particular $X_T(\omega) = \lim_n X_{T \wedge n}(\omega)$ for almost all $\omega \in \Omega$.

(v) Assume now that (X_n) is a supermartingale with $X_n \ge 0$ a.s for all $n \ge 0$. Prove that

$$E(X_T) \le E(X_0)$$

Problem 2, the mother of all martingales

We consider the probality space $([0, 1], \mathcal{B}, P)$ where P denotes the Lebesgue measure on [0, 1]and \mathcal{B} denotes the σ -algebra of all Borel subsets of [0, 1]. We define a sequence (h_n) of measurable functions by:

$$h_1(t) = 1$$
 for all $t \in [0, 1]$.

For all $k \in \mathbb{N} \cup \{0\}$ og $1 \le \ell \le 2^k$ we put:

$$h_{2^{k}+\ell}(t) = \left\{ \begin{array}{ccc} 1 & \text{if} & t \in [(2\ell-2)2^{-k-1}, (2\ell-1)2^{-k-1}[\\ -1 & \text{if} & t \in [(2\ell-1)2^{-k-1}, 2\ell 2^{-k-1}[\\ 0 & \text{otherwise.} \end{array} \right\}$$

 (h_n) is called the Haar system on [0, 1].

- 1. Draw the graphs of the first 5 Haar functions.
- 2. Let for all $n \in \mathbb{N}$ $\mathcal{F}_n = \sigma\{h_m \mid 1 \le m \le n\}$. Recall that the atoms in \mathcal{F}_n are precisely the sets in \mathcal{F}_n on which all the h_m 's are constant for $1 \le m \le n$. Let now $n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{0\}$ with $2^k < n \le 2^{k+1}$ and $B \in \mathcal{F}_n$. Prove that B is an atom in \mathcal{F}_n if and only if: Either there is an m with $2^k < m \le n$ so that

$$B = \{t \in [0,1] \mid h_m(t) = 1\}$$

or

$$B = \{t \in [0, 1] \mid h_m(t) = -1\}$$

or in the case where $n < 2^{k+1}$: B is an atom in \mathcal{F}_{2^k} and $B \subseteq \bigcap_{m=2^k+1}^n h_m^{-1}(0)$.

This desciption is of course modulo zero-sets.

3. Show that if m < n and $B \in \mathcal{F}_m$ is an atom, then

$$\int_{B} h_n(t)dt = 0$$

4. Let $(t_n) \subseteq \mathbb{R}$ and define $X_n : [0,1] \to \mathbb{R}$ by

$$X_n = \sum_{m=1}^n t_m h_m \quad \text{for all } n \in \mathbb{N}.$$

Show that (X_n) is a martingale. Here it is a good idea to consult exercise 2 in Exercises for MM513.

For every $n \in \mathbb{N}$ we put

$$A_n = \{t \in [0,1] \mid h_n(t) = 1\} \cup \{t \in [0,1] \mid h_n(t) = -1\}.$$

5. Let $n \in \mathbb{N}$, $f \in L_1([0,1])$. Show that if either $B = \{t \in [0,1] \mid h_{n+1}(t) = 1\}$ or $B = \{t \in [0,1] \mid h_{n+1}(t) = -1\}$, then

$$\int_{B} E(f \mid \mathcal{F}_{n})(t)dt = \frac{1}{2} \int_{A_{n+1}} f(t)dt.$$

Hint: Use that an \mathcal{F}_n -measurable stochastic variable is constant on an atom in \mathcal{F}_n . Let now $f \in L_1([0, 1])$ be fixed in the rest of this problem. For every $n \in \mathbb{N}$ we put

$$t_n = P(A_n)^{-1} \int_{A_n} f(t)h_n(t)dt.$$

By induction we want to prove that:

$$E(f \mid \mathcal{F}_n) = \sum_{m=1}^n t_m h_m \quad \text{for all } n \in \mathbb{N},$$
(0.1)

but we do it stepwise.

6. To prove (0.1) it is enough to prove that for all $n \in \mathbb{N}$ and every atom $B \in \mathcal{F}_n$ we have:

$$\int_{B} f(t)dt = \int_{B} \sum_{m=1}^{n} t_{n}h_{m}(t)dt.$$
(0.2)

Why?

7. Prove (0.1) by induction. Hint: If (0.1) is proved for *n*, we can write:

$$\sum_{m=1}^{n+1} t_m h_m = E(f \mid \mathcal{F}_n) + t_{n+1} h_{n+1}.$$

Now use 5. and (0.2) in a suitable manner.

8. Prove that

$$f = \sum_{m=1}^{\infty} t_m h_m,$$

where the convergence is in $L_1[0, 1]$.

Hint: Let \mathcal{B} be the Borel algebra on [0, 1] and \mathcal{F}_{∞} as in the notes. Without proof you may use that $\mathcal{B} = \mathcal{F}_{\infty}$.

You have now proved that (h_n) is a basis for $L_1([0,1])$ in the sense of Banach spaces.

Problem 3

Let (Ω, \mathcal{F}, P) be a probability space and let (Y_n) be a sequence of independent stochastic variables so that $E(Y_n) = 1$ og $Y_n > 0$ n.s. for alle $n \in \mathbb{N}$. Put $\mathcal{F}_n = \sigma\{Y_j \mid 1 \leq j \leq n\}$ and $X_n = \prod_{j=1}^n Y_j$.

- (i) Prove that (X_n) is a martingale and show that there is a stochastic variable X so that $X_n \to X$ n.s.
- (ii) Show that $E(X) \leq \lim_{n \to \infty} \prod_{j=1}^{n} E(Y_j) = \prod_{j=1}^{\infty} E(Y_j) = 1.$
- (iii) Assume further that we have:

$$P(Y_n = \frac{1}{2}) = P(Y_n = \frac{3}{2}) = \frac{1}{2}$$

for alle $n \in \mathbb{N}$ so that the Y_n 's are identically distributed. Show that X = 0 n.s. Hint: Compute $E(\log Y_n)$ and realize that $E(\log Y_n) < 0$. Now apply the Strong Law of Large numbers (either Theorem 5.3.1 or Theorem 5.4.4 in the book; the latter will be proved in week 19) on the the sequence $(\log Y_n)$.

Hence it can happen that the inequality in (ii) is sharp.

(iv) Show that under the conditions in (iii) the sequence (X_n) does not converge to X in $L_1(P)$.

Problem 4

Let (Ω, \mathcal{F}, P) be a probability space and let $(X_n)_{n\geq 0} \subseteq L_2(P)$ be a martingale (relative to some filtration (\mathcal{F}_n) of \mathcal{F}) with $X_0 = 0$.

(i) Prove that (X_n²) is a submartingale and conclude that there exists a martingale (M_n) and a non-decreasing process (A_n) so that M₀ = A₀ = 0, A_n is F_{n-1}-measurable for all n ≥ 1, and

$$X_n^2 = M_n + A_n \quad \text{for all } n \ge 0.$$

Put $A_{\infty} = \lim_{n \to \infty} A_n$ and prove that $E(X_n^2) = E(A_n)$ and that $E(X_n^2) \to E(A_{\infty})$ for $n \to \infty$.

Conclude that (X_n) is bounded in $L_2(P)$ if and only if $E(A_{\infty}) < \infty$.

From now on we assume that $E(A_{\infty}) < \infty$.

- (ii) Prove that (X_n) is uniformly integrable and that there is an $X \in L_1(P)$ so that $X = \lim_n X_n$ a.s. and in $L_1(P)$.
- (iii) Prove that for all $m \leq n$ we have that

$$E((X_n - X_m)^2 \mid \mathcal{F}_m) = E(X_n^2 \mid \mathcal{F}_m) - X_m^2$$

and conclude that

$$E((X_n - X_m)^2) = E(X_n^2) - E(X_m^2).$$

(iv) Let now m be fixed for a moment. Use (i) and (ii) to prove that

$$E((X - X_m)^2) \le E(A_\infty) - E(X_m^2)$$
 (0.3)

and conclude that $X \in L_2(P)$.

Finally use (0.3) to prove that $X_m \to X$ in $L_2(P)$