
Obligatory Problems MM513

N.J. Nielsen

Problem 1

Let (Ω,F , P ) be a probability space and let (Fn) be a filtration of F . Further let (Xn)n≥0 be a
sequence of s.v.’s so that Xn is Fn–measurable for all n ≥ 0 and let (Cn)n≥1 be a sequence of
sv.’s so that Cn is Fn−1 for all n ≥ 1 and so that there is a constant K so that 0 ≤ Cn ≤ K a.s.
for all n ∈ N.

For every n ∈ N we put

Yn =
n∑

k=1

Ck(Xk −Xk−1), Y0 = 0.

(i) Prove that (Yn) is a martingale, if (Xn) is a martingale, a submartingale, if (Xn) is a
submartingale, and a supermartingale, if (Xn) is a supermartingale.

Let now T be a stopping time so that P (T <∞) = 1).

(ii) Prove that the set (T < n) ∈ Fn−1 for all n ≥ 1 and conclude that 1(T≥n) is Fn−1–
measurable for all n ≥ 1.

(iii) Prove that for all n ≥ 1 we have

XT∧n −X0 =
n∑

k=1

1(T≥k)(Xk −Xk−1).

Conclude from (i) that (XT∧n) is a martingale (relative to (Fn)), if (Xn) is a martingale, a
submartingale, if (Xn) is a submartingale, and a supermartingale, if (Xn) is a supermartin-
gale.

iv) Prove that for almost all ω ∈ Ω we have that T (ω)∧ n = T (ω) for n sufficiently large and
hence also XT∧n(ω) = XT (ω) for n sufficienly large.

In particular XT (ω) = limnXT∧n(ω) for almost all ω ∈ Ω.

(v) Assume now that (Xn) is a supermartingale with Xn ≥ 0 a.s for all n ≥ 0. Prove that

E(XT ) ≤ E(X0).
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Problem 2, the mother of all martingales

We consider the probality space ([0, 1],B, P ) where P denotes the Lebesgue measure on [0, 1]
and B denotes the σ–algebra of all Borel subsets of [0, 1]. We define a sequence (hn) of measur-
able functions by:

h1(t) = 1 for all t ∈ [0, 1].

For all k ∈ N ∪ {0} og 1 ≤ ` ≤ 2k we put:

h2k+`(t) =


1 if t ∈ [(2`− 2)2−k−1, (2`− 1)2−k−1[
−1 if t ∈ [(2`− 1)2−k−1, 2`2−k−1[

0 otherwise.


(hn) is called the Haar system on [0, 1].

1. Draw the graphs of the first 5 Haar functions.

2. Let for all n ∈ N Fn = σ{hm | 1 ≤ m ≤ n}. Recall that the atoms in Fn are precisely the
sets in Fn on which all the hm’s are constant for 1 ≤ m ≤ n. Let now n ∈ N, k ∈ N∪{0}
with 2k < n ≤ 2k+1 and B ∈ Fn. Prove that B is an atom in Fn if and only if: Either
there is an m with 2k < m ≤ n so that

B = {t ∈ [0, 1] | hm(t) = 1}

or
B = {t ∈ [0, 1] | hm(t) = −1}

or in the case where n < 2k+1: B is an atom in F2k and B ⊆ ∩n
m=2k+1

h−1
m (0).

This desciption is of course modulo zero–sets.

3. Show that if m < n and B ∈ Fm is an atom, then∫
B

hn(t)dt = 0

4. Let (tn) ⊆ R and define Xn : [0, 1]→ R by

Xn =
n∑

m=1

tmhm for all n ∈ N.

Show that (Xn) is a martingale. Here it is a good idea to consult exercise 2 in Exercises
for MM513.

For every n ∈ N we put

An = {t ∈ [0, 1] | hn(t) = 1} ∪ {t ∈ [0, 1] | hn(t) = −1}.
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5. Let n ∈ N, f ∈ L1([0, 1]). Show that if either B = {t ∈ [0, 1] | hn+1(t) = 1} or
B = {t ∈ [0, 1] | hn+1(t) = −1}, then∫

B

E(f | Fn)(t)dt =
1

2

∫
An+1

f(t)dt.

Hint: Use that an Fn–measurable stochastic variable is constant on an atom in Fn.

Let now f ∈ L1([0, 1]) be fixed in the rest of this problem. For every n ∈ N we put

tn = P (An)−1

∫
An

f(t)hn(t)dt.

By induction we want to prove that:

E(f | Fn) =
n∑

m=1

tmhm for all n ∈ N, (0.1)

but we do it stepwise.

6. To prove (0.1) it is enough to prove that for all n ∈ N and every atom B ∈ Fn we have:∫
B

f(t)dt =

∫
B

n∑
m=1

tnhm(t)dt. (0.2)

Why?

7. Prove (0.1) by induction. Hint: If (0.1) is proved for n, we can write:

n+1∑
m=1

tmhm = E(f | Fn) + tn+1hn+1.

Now use 5. and (0.2) in a suitable manner.

8. Prove that

f =
∞∑

m=1

tmhm,

where the convergence is in L1[0, 1].

Hint: Let B be the Borel algebra on [0, 1] and F∞ as in the notes. Without proof you may
use that B = F∞.

You have now proved that (hn) is a basis for L1([0, 1]) in the sense of Banach spaces..
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Problem 3

Let (Ω,F , P ) be a probability space and let (Yn) be a sequence of independent stochastic vari-
ables so that E(Yn) = 1 og Yn > 0 n.s. for alle n ∈ N. Put Fn = σ{Yj | 1 ≤ j ≤ n} and
Xn =

∏n
j=1 Yj .

(i) Prove that (Xn) is a martingale and show that there is a stochastic variable X so that
Xn → X n.s.

(ii) Show that E(X) ≤ limn

∏n
j=1E(Yj) =

∏∞
j=1E(Yj) = 1.

(iii) Assume further that we have:

P (Yn =
1

2
) = P (Yn =

3

2
) =

1

2

for alle n ∈ N so that the Yn’s are identically distributed. Show that X = 0 n.s. Hint:
Compute E(log Yn) and realize that E(log Yn) < 0. Now apply the Strong Law of Large
numbers (either Theorem 5.3.1 or Theorem 5.4.4 in the book; the latter will be proved in
week 19) on the the sequence (log Yn).

Hence it can happen that the inequality in (ii) is sharp.

(iv) Show that under the conditions in (iii) the sequence (Xn) does not converge toX inL1(P ).

Problem 4

Let(Ω,F , P ) be a probability space and let (Xn)n≥0 ⊆ L2(P ) be a martingale (relative to some
filtration (Fn) of F) with X0 = 0.

(i) Prove that (X2
n) is a submartingale and conclude that there exists a martingale (Mn) and a

non–decreasing process (An) so that M0 = A0 = 0, An is Fn−1–measurable for all n ≥ 1,
and

X2
n = Mn + An for all n ≥ 0.

Put A∞ = limnAn and prove that E(X2
n) = E(An) and that E(X2

n) → E(A∞) for
n→∞.

Conclude that (Xn) is bounded in L2(P ) if and only if E(A∞) <∞.

From now on we assume that E(A∞) <∞.

(ii) Prove that (Xn) is uniformly integrable and that there is an X ∈ L1(P ) so that X =
limnXn a.s. and in L1(P ).

(iii) Prove that for all m ≤ n we have that

E((Xn −Xm)2 | Fm) = E(X2
n | Fm)−X2

m
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and conclude that
E((Xn −Xm)2) = E(X2

n)− E(X2
m).

(iv) Let now m be fixed for a moment. Use (i) and (ii) to prove that

E((X −Xm)2) ≤ E(A∞)− E(X2
m) (0.3)

and conclude that X ∈ L2(P ).

Finally use (0.3) to prove that Xm → X in L2(P )
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