
A Banach space with a symmetric basis which is of
weak cotype 2 but not of cotype 2

Peter G. Casazza∗ Niels J. Nielsen†

Abstract

We prove that the symmetric convexified Tsirelson space is of weak cotype 2 but not of
cotype 2.

Introduction
Weak type 2 and weak cotype 2 spaces were originally introduced and investigated by V.D.
Milman and G. Pisier in [10] and weak Hilbert spaces by Pisier in [13]. A further detailed
investigation can be found in Pisier’s book [14]. The first example of a weak Hilbert space which
is not isomorphic to a Hilbert space is the 2-convexified Tsirelson space (called the convexified
Tsirelson space in this paper). This follows from the results of W.B. Johnson in [4]. For a detailed
study of the original Tsirelson space we refer to [3].

Let X be a Banach space with a symmetric basis. It was proved in [14] that if X is a weak
Hilbert space, then it is isomorphic to a Hilbert space and this has lead to the belief that if X is
just of weak cotype 2, then it is of cotype 2. However, this turns out not necessarily to be the
case. The main result of this paper states that the symmetric convexified Tsirelson space is of
weak cotype 2 but not of cotype 2.

We now wish to discuss the arrangement of this paper in greater detail.
In Section 1 we give some basic facts on properties related to weak type 2 and weak cotype 2

while Section 2 is devoted to a review of some results on the convexified Tsirelson space which
we need for our main result. Most of these results are stated without proofs since they can be
proved in a similar manner as the corresponding results for the original Tsirelson space.

In Section 3 we make the construction of the symmetric convexified Tsirelson space, investi-
gate its basic properties and prove our main result stated above.
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1 Notation and Preliminaries
In this paper we shall use the notation and terminology commonly used in Banach space theory
as it appears in [8], [9] and [16]. BX shall always denote the closed unit ball of the Banach space
X and if X and Y are Banach spaces, then B(X, Y ) (B(X) = B(X,X)) denotes the space of
all bounded linear operators from X to Y .

We let (gn) denote a sequence of independent standard Gaussian variables on a fixed prob-
ability space (Ω,S, µ) and recall that a Banach space X is said to be of type p, 1 ≤ p ≤ 2,
(respectively cotype p, 2 ≤ p < ∞) if there is a constant K ≥ 1 so that for all finite sets
{x1, x2, . . . , xn} ⊆ X we have

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥pdµ(t)

) 1
p ≤ K

( n∑
j=1

‖xj‖p
) 1

p (1.1)

(respectively

K
( n∑
j=1

‖xj‖p
) 1

p ≤
( ∫ ∥∥ n∑

j=1

gj(t)xj
∥∥pdµ(t)

) 1
p ). (1.2)

The smallest constant K which can be used in (1.1) (respectively (1.2)) is denoted by Kp(X)
(respectively Kp(X)).

IfL is a Banach lattice and 1 ≤ p <∞, thenL is said to be p-convex (respectively p-concave)
if there is a constant C ≥ 1 so that for all finite sets {x1, x2, . . . , xn} ⊆ L we have

‖(
n∑
j=1

|xj|p)
1
p‖ ≤ C(

n∑
j=1

‖xj‖p)
1
p (1.3)

(respectively

(
n∑
j=1

‖xj‖p)
1
p ≤ C‖(

n∑
j=1

|xj|p)
1
p‖). (1.4)

The smallest constant C which can be used in (1.3) (respectively (1.4)) is denoted by Cp(L)
(respectively Cp(L)).

It follows from [9, 1.d.6 (i)] that if L is of finite concavity (equivalently of finite cotype), then
there is a constant K ≥ 1 so that

1

K
‖(

n∑
j=1

|xj|2)
1
2‖ ≤

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥2
dµ(t)

) 1
2 ≤ K‖(

n∑
j=1

|xj|2)
1
2‖ (1.5)
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A Banach space X is said to be of weak type 2 if there is a constant C and a δ, 0 < δ < 1,
so that whenever E ⊆ X is a subspace, n ∈ N and T ∈ B(E, `n2 ), then there is an orthogonal
projection P on `n2 of rank larger than δn and an operator S ∈ B(X, `n2 ) with Sx = PTx for all
x ∈ E and ‖S‖ ≤ C‖T‖.

Similarly X is called a weak cotype 2 if there is a constant C and a δ, 0 < δ < 1, so that
whenever E ⊆ X is a finite dimensional subspace, then there is a subspace F ⊆ E so that
dimF ≥ δ dimE and d(F, `dimF

2 ) ≤ C.
Our definitions of weak type 2 and weak cotype 2 space are not the original ones, but are

chosen out of the many equivalent characterizations given by Pisier [14].
A weak Hilbert space is a space which is both of weak type 2 and weak cotype 2.
If A is a set we let |A| denote the cardinality of A.

Definition 1.1 If (xn) and (yn) are sequences in a Banach space X , we say that (xn) is K-
dominated by (yn) if there is a constant K > 0 so that for all finitely non-zero sequences of
scalars (an) we have

‖
∑
n

anxn‖ ≤ K‖
∑
n

anyn‖.

The sequences (xn) and (yn) are K-equivalent if they K-dominate one another.

We will need some information about property (H) and related properties.

Definition 1.2 A Banach space X has property (H2) if there is a function C(·, ·) so that for
every 0 < δ < 1 and for every normalized λ-unconditional basic sequence (xi)

n
i=1 in X there is

a subset F ⊆ N such that |F | ≥ δn and (xi)i∈F is C(λ, δ)-equivalent to the unit vectors basis
of `|F |2 . If we only have that (xi)i∈F is C(λ, δ) dominated by the unit vector basis of `|F |2 , we say
that X has property upper (H2). Similarly, we define property lower (H2).

Definition 1.3 A Banach space X is said to have property (H) if there is a function f(·) so that
for every normalized λ-unconditional basic sequence (xi)

n
i=1 in X , we have

1

f(λ)
n1/2 ≤ ‖

n∑
i=1

xi‖ ≤ f(λ)n1/2.

Similarly, we can define property upper (H) and property lower (H).

The following is clear.

Proposition 1.4 Property upper (resp. lower) (H2) implies upper (resp. lower) (H).

We will see later that the converses of Proposition 1.4 fail.
The next result shows that any percentage of the basis will work in the definition of (H2).

The proof follows from the argument of Pisier [14, Proposition 12.4, page 193].
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Lemma 1.5 For a Banach space X , the following are equivalent:
(1) X has property upper (resp. lower) (H2).
(2) There exists one 0 < δ < 1 satisfying the conclusion of property upper (resp. lower)

(H2).

The corresponding result for property (H) is in [3, Proposition Ae1, page 14].

Lemma 1.6 For a Banach space X , the following are equivalent:
(1) X has property upper (resp. lower) (H).
(2) There is a 0 < δ < 1 so that for every λ-unconditional basic sequence (xi)

n
i=1 in X there

is a subset F ⊂ {1, 2, · · · , n} with |F | ≥ δn and (xi)i∈F has property upper (resp. lower) (H).

The next theorem is due to Pisier [14, Proposition 12.4].

Proposition 1.7 Every weak Hilbert space has property (H2).

We also have from Pisier [14, Proposition 10.8, page 160 and Proposition 11.9, page 174]:

Proposition 1.8 The following implications hold for a Banach space X:
(1) Weak cotype 2 implies property lower (H).
(2) Weak type 2 implies property upper (H).

The converses of Proposition 1.8 are open questions. However, for Banach lattices it is
known that property (H), property (H2) and being a weak Hilbert space are all equivalent. This
is a result of Nielsen and Tomczak-Jaegermann [12].

2 Convexified Tsirelson Space
Since there is only a “partial theory” developed for the convexified Tsirelson space T 2, we will
review what we need here.

Notation 2.1 If E,F are sets of natural numbers, we write E < F if for every n ∈ E and every
m ∈ F , n < m. If E = {k}, we just write k < F for E < F .

Definition 2.2 Let (tn)∞n=1 be the canonical unit vectors in RN. The convexified Tsirelson space
T 2 is (see [3]) the set of vectors x =

∑
n antn for which the recursively defined norm below is

finite.

‖x‖T 2 = max{sup|an|, 2−1/2sup

(
k∑
j=1

‖Ejx‖2
T 2

)1/2

}, (2.1)

where the second “sup” is taken over all choices

k ≤ E1 < E2 < · · · < Ek,

and Ex =
∑

n∈E antn.
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Remark: It follows from Pisier [14, Chapter 13] ([3, Chapter 1] for the original Tsirelson space)
that there exists a norm satisfying (2.1) above.

We will now list the known results for this space (which we will need) and where they can
be found. Although many of the results we need have formally been proved for the original
Tsirelson space T , using the fact that T 2 is the 2-convexification of T we can easily carry these
results over to T 2. The first result can be found in [3] and [14].

Proposition 2.3 The unit vectors (tn) form a 1-unconditional basis for T 2. The space T 2 is of
type 2 and weak cotype 2 but does not contain a Hilbert space. Also, the unit vector basis (en)
of `2 1-dominates all subsequences of (tn). That is, for x ∈ T 2, ‖x‖T 2 ≤ ‖x‖`2 . Finally, if
I ⊂ {n, n+ 1, n+ 2, · · ·} with |I| ≤ n and x =

∑
n∈I antn then ‖x‖`2 ≤ 2‖x‖T 2 .

We also need Lemma II.1, page 19 of [3]. This lemma is stated in [3] for the original Tsirelson
space but the proof works the same in T 2.

Proposition 2.4 Let yn =
∑

i∈In aiti (n = 1, 2, 3, · · ·) be a normalized disjointly supported
sequence in (tn) and let pn = min In. Then for every sequence of scalars (an) we have

‖
∑
n

antpn‖T 2 ≤ ‖
∑
n

anyn‖T 2 .

Next we need to see which subsequences of the unit vector basis of T 2 are equivalent to the
original basis. To do this we need:

Notation 2.5 The fast growing hierarchy from logic is a family of functions on N given by:
go(n) = n + 1, and for i ≥ 0, gi+1(n) = g

(n)
i (n), where for any function f , f (n) is the n-fold

iteration of f . We also set exp0(n) = n and for i ≥ 1 and n,

expi(n) = 2expi−1(n).

Finally we let log0(n) = n, and for any i ≥ 1 and n large enough so that logi−1(n) > 0, let

logi(n) = log(logi−1(n)).

The next result is due to Bellenot [1]. He does this result in the original Tsirelson’s space T ,
but the proof works perfectly well in T 2.

Proposition 2.6 A subsequence (tkn) of (tn) is equivalent to (tn) if and only if there is a natural
number i so that kn ≤ gi(n), for all large n. Moreover, (tkn) always 1-dominates (tn) and there
is a constant K ≥ 1 so that the equivalence constant is Ki for the case kn = gi(n).

One important consequence is (see Pisier [14] or Casazza and Shura [3]).

Proposition 2.7 For every natural number i, every gi(n)-dimensional subspace of span (tj)j≥n
is Ki-isomorphic to a Hilbert space and Ki-complemented in T 2.
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If X is a weak Hilbert space with an unconditional basis, then it follows from [12] that the
conclusion of Proposition 2.7 remains true after a suitable permutation of the basis.

The next result comes from [3, Theorem IV.b.3, page 39]. The theorem there is proved for
the regular Tsirelson space but the techniques easily adapt to convexified space. Also, although
the theorem is stated for distances between subspaces, the proof actually checks the equivalence
constant of normalized disjointly supported sequences with n-elements in (tn) and the unit vector
basis of `n1 . So we state this form here.

Proposition 2.8 Every n-dimensional subspace of T 2 is Kilogi(n) isomorphic to `n2 , for every
i ≥ 2 with logi(n) ≥ 1. Moreover, every normalized disjointly supported sequence (xj)

n
j=1 in T 2

is Kilogi(n)-equivalent to the unit vector basis of `n2 , and if the support of the x′js lies in (tj)
∞
j=n,

then (xj)
n
j=1 is 2-equivalent to the unit vector basis of `n2 .

We need one more result on convexified Tsirelson.

Proposition 2.9 If x =
∑

j ajtj ∈ T 2, then for all n ∈ N and all i ≥ 2 with logi(n) ≥ 1,

‖
∑
j

ajtnj‖T 2 ≤ 2Ki(login)‖x‖T 2 .

Proof: By Proposition 2.6 and Proposition 2.8 we have

‖
∑
j

ajtnj‖T 2 ≤ ‖
n∑
j=1

ajtnj‖T 2 + ‖
∞∑

j=n+1

ajtnj‖T 2 ≤

(
n∑
j=1

|aj|2
)1/2

+K2‖
∞∑

j=n+1

ajtj‖T 2

≤ Ki(login)‖
n∑
j=1

ajtj‖T 2 +K2‖
∞∑

j=n+1

ajtj‖T 2 ≤ 2Ki(login)‖x‖T 2 ,

where in the second inequality above we use Propositions 2.3 and 2.6 and the fact that nj ≤ g2(j)
for all j ≥ n+ 1; and in the third inequality we have used Proposition 2.8. 2

3 Symmetric Convexified Tsirelson Space
There is almost no existing theory for the symmetric convexified Tsirelson space. But there is a
theory for the symmetric Tsirelson space. We will list the results we need on this topic. They
can be found in Casazza and Shura [3, Chapter X.E].

Notation 3.1 For T 2 or (T 2)∗ we will work with the non-decreasing rearrangement operator D.
That is, if x =

∑
n antn then Dx =

∑
n a
∗
ntn where (a∗n) is the non-decreasing re-arrangement

of the non-zero a′ns where by non-decreasing we mean the absolute values are non-decreasing.

The construction of Chapter VIII of [3, Chapters VIII and X.B] shows
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Proposition 3.2 Let Π denote the group of all permutations of N. There is a constant K ≥ 1 so
that for any x =

∑
n ant

∗
n ∈ (T 2)∗ we have

‖x‖S[(T 2)∗] =: supσ∈Π‖
∑
n

aσ(n)t
∗
n‖(T 2)∗ ≤ K‖Dx‖(T 2)∗ ≤ Ksupσ∈Π‖

∑
n

aσ(n)t
∗
n‖S[(T 2)∗].

(3.1)

We will define the dual space of the symmetric convexified Tsirelson space first because it is
natural in terms of the above.

Definition 3.3 We let S[(T 2)∗] be the family of all vectors for which ‖x‖S[(T 2)∗] is finite. Then
this is a Banach space with a natural symmetric basis, denoted (ts∗n ), called the dual space of the
symmetric convexified Tsirelson space.

To define the the symmetric convexified Tsirelson space we need a result kindly communi-
cated to us by N.J. Kalton.

Let X be a Banach sequence space with the standard unit vector basis (ei). Define the
permutation operators Sσ(ξ) = (ξσ(n))

∞
n=1 for σ ∈ Π and let Ljk to be the linear map such

that Ljk(en) = ekn+j for all n ∈ N. Finally we let c00 denote the spaces af real sequences which
are eventually 0.

Theorem 3.4 Suppose X is a Banach sequence space which is p-convex and q-concave where
1 < p < q <∞. Suppose max0≤j<k ‖Ljk‖ ≤ Cka where a+ p−1 < 1. Then

‖ξ‖Xinf
= inf

σ∈Π
‖Sσξ‖X , x ∈ c00

defines a quasi-norm on c00 which is equivalent to a norm. The dual of Xinf is X∗sup where

‖ξ‖X∗
sup

= sup
σ∈Π
‖Sσξ‖X∗ .

Proof: Let us start by supposing x1, · · · , xk ∈ c00 are disjointly supported and that σ1, · · · , σk ∈
Π. Then

‖x1 + · · ·+ xk‖Xinf
≤ ‖

k∑
j=1

Lj−1
k Sσjxj‖X

≤ (
k∑
j=1

‖Lj−1
k Sσjxj‖

p
X)

1
p

≤ Cka(
k∑
j=1

‖Sσjxj‖
p
X)

1
p .

Now taking an infimum over σj gives

‖x1 + · · ·+ xk‖Xinf
≤ Cka(

k∑
j=1

‖xj‖pXinf
)
1
p . (3.2)

7



Let us use (3.2) first to show that ‖ · ‖Xinf
is a quasi-norm. Indeed if x, y ∈ c00 then

‖x+ y‖Xinf
≤ 2‖max(|x|, |y|)‖Xinf

≤ 2a+1C(‖x‖Xinf
+ ‖y‖Xinf

).

Next note that (3.2) implies

‖x1 + · · ·+ xk‖Xinf
≤ Cka+ 1

p max
1≤j≤k

‖xj‖Xinf
.

From this it follows easily that if a+ 1
p
< 1

r
< 1 we have

‖x1 + · · ·+ xk‖Xinf
≤ Cr(

k∑
j=1

‖xj‖rXinf
)
1
r

for disjoint x1, · · · , xk. Thus we have an upper r-estimate for Xinf .
It is trivial to show Xinf has a lower q-estimate. Now by [5, Theorem 4.1] (a simpler proof is

given in [6, Theorem 3.2] ) it follows that Xinf is lattice-convex and this means that an upper r-
estimate implies (lattice) s-convexity for all s < r (Theorem 2.2 of [5]). Hence Xinf is r-convex
for every r with a + 1

p
< 1

r
. In particular 1-convexity implies the quasi-norm is equivalent to a

norm. In fact X∗inf is a reflexive Banach space.
Now it is obvious that Xinf ⊂ (X∗sup)

∗ and X∗sup ⊂ (Xinf )
∗. Hence it follows easily that

(Xinf )
∗ = X∗sup. 2

Remark: We can apply the above result to the case of the weighted `p−space X , with 1 < p <
∞ defined by the norm

‖ξ‖X = (
∞∑
n=1

|ξn|pwn)
1
p

where (wn) is an increasing sequence satisfying an estimate of the form

wkn ≤ Ckawn

where a < p− 1. The Xinf is defined by the quasi-norm

‖ξ‖Xinf
= (

∞∑
n=1

(ξ∗n)pwpn)
1
p

where (ξ∗n) is the decreasing rearrangement of (|ξn|). In this case Xsup is the Lorentz space
d((wn)−q/p, q).

This result can be rephrased. If (vn) is a positive decreasing sequence satisfying an estimate
vn ≤ Ckbvkn where b < 1 then d((vn), p)∗ can be identified with the space of all sequences (ξn)
so that

(
∞∑
n=1

(ξ∗n)qv−q/pn )
1
q <∞.
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This result is a special case of results of Reisner [15].

Proposition VIII.a.8 of [3] states that the decreasing rearrangement operator D is a bounded
non-linear operator on the original Tsirelson space T . This result then immediately carries over
to the 2-convexification of T which is our convexified Tsirelson space T 2. By Proposition 2.9
we have that Theorem 3.4 holds in this case. We summarize this in the following result:

Proposition 3.5 There is a constant K ≥ 1 so that for any x =
∑

n antn ∈ T 2 we have

infσ∈Π‖
∑
n

aσ(n)tn‖T 2 ≤ ‖Dx‖T 2 ≤ Kinfσ∈Π‖
∑
n

aσ(n)tn‖T 2 . (3.3)

Moreover, there is a norm ‖ · ‖S(T 2) on the set of vectors for which ‖Dx‖ <∞ satisfying

1

K
‖x‖S(T 2) ≤ ‖Dx‖T 2 ≤ K‖x‖S(T 2). (3.4)

Note that our operator D does not satisfy a triangle inequality, but does with the constant K
on the sum side of the triangle inequality.

Definition 3.6 The symmetric convexified Tsirelson space is the Banach space S(T 2) of vectors
for which ‖x‖S(T 2) < ∞ with natural unit vector basis (tsn). By Theorem 3.4 this is a reflexive
Banach space whose dual space is S[(T 2)∗].

It is known [3] that every infinite dimensional subspace of S(T 2)) contains a subspace which
embeds into T 2. In particular S(T 2) is a Banach space with a natural symmetric basis which has
no subspaces isomorphic to c0 or `p for 1 ≤ p < ∞. Also T 2 embeds into S(T 2). Since the
unit vector basis of `2 uniformly dominates all block bases of (tn) in T 2, it follows that the unit
vector basis of S(T 2) is also dominated by the unit vector basis of `2.

Proposition 3.7 The space S(T 2) fails property upper (H) (even for disjointly supported ele-
ments) and fails property lower (H2). Hence S(T 2) is not of weak type 2 and not of cotype
2.

Proof: First we check property lower (H2). Since (tsn) is symmetric and is dominated by the unit
vector basis of `2, it follows that if this family had subsets dominating the unit vector basis of `2,
then (tsn) would be equivalent to the unit vector basis of `2 which is impossible.

For property upper (H), fix M > 1 and choose a decreasing sequence of non-zero scalars
(ai)

n
i=1 with ‖

∑n
i=1 aiei‖`2 ≥ M and ‖

∑n
i=1 aiti‖T 2 = 1. This can be done by a obvious

modification of the construction of [[3], Chapter IV]. For all 1 ≤ j ≤ 2n let

xj =

n(j+1)∑
i=nj+1

ai−njt
s
i ,
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be vectors in S(T 2). So ‖xj‖S(T 2) ≤ K for all 1 ≤ j ≤ 2n. Now, D(
∑2n

i=1 xi) =
∑2n

i=1 yi
where each yi is an appropriate permutation of xi. Since the y′is are disjoint, there is a subset
I ⊂ {1, 2, · · · , 2n} with |I| ≥ n and each yi with i ∈ I has its support in (tsj)

∞
j=n. Hence,

‖
2n∑
i=1

xi‖S(T 2) ≥ K−1‖D(
2n∑
i=1

xi)‖T 2 ≥ K−1‖
∑
i∈I

yi‖T 2

≥
(1)

(2K)−1

(∑
i∈I

‖yi‖2
T 2

)1/2

≥
(2)

(4K)−1

(∑
i∈I

‖yi‖2
`2

)1/2

≥ (4K)−1M |I|1/2 = (4K)−1Mn1/2.

In inequality (1) above we use Proposition 2.8 and in inquality (2) we use Proposition 2.3.
Since M was arbitrarily large, it follows that S(T 2) fails upper (H) - for disjoint elements.

2

We shall now need a result essentially due to S. Kwapien. In the form we present it is due to
W.B. Johnson and it appeared in [7]

Proposition 3.8 There is a function

N(k, ε) =

[
2k2

ε

]k
such that for any fixed 0 < ε < 1, every order complete Banach Lattice L, and every k-
dimensional subspace F of L, there are N = N(k, ε) disjoint elements (xj)

N
j=1 in L and a

linear operator V : F → X = span(xj) such that for all x ∈ F we have

‖V x− x‖ ≤ ε‖x‖.

Proposition 3.9 There is a constant K > 1 so that for every subspace E of S(T 2) of dimension
n, we have for all i ∈ N for which logi−1n exists,

d(E, `n2 ) ≤ Kilogi−2n.

Moreover, any normalized disjointly supported sequence of vectors (xi)
n
i=1 in S(T 2) isKilogi−2n-

equivalent to the unit vector basis of `n2 .

Proof: By giving up one level of logs we may assume by Proposition 3.8 that we are working
with a normalized disjointly supported sequence of vectors (xj)

n
j=1 in S(T 2). We will show that

this disjointly supported sequence is Kilogi−2n-equivalent to the unit vector basis of `2. Now
there is a disjoint set of permutations yj of the xj so that

‖
n∑
j=1

ajxj‖ST 2 ≥ 1

K
‖

n∑
j=1

ajyj‖T 2

≥ 1

K
‖

n∑
j=1

ajtj‖T 2 ≥ 1

Ki+1(login)

(
n∑
j=1

|aj|2
)1/2

,
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where in the second inequality above we use Proposition 2.4 and the third uses Proposition 2.8.
Also, let Dxj = zj and

wj =
∑
k

zj(k)tn(k−1)+j,

We may asume that K is larger than the type 2 constant of T 2. By Proposition 2.9 we have

‖D
n∑
j=1

ajxj‖ST 2 ≤ K‖
n∑
j=1

ajwj‖T 2 ≤ K2

(
n∑
j=1

|aj|2‖wj‖2
T 2

)1/2

≤ K2

(
n∑
j=1

|aj|2[2Ki(login)]2

)1/2

≤ 2Ki+2(login)

(
n∑
j=1

|aj|2
)1/2

,

where in the second inequality above we used the fact that the type 2 constant of T 2 is less than
or equal to K. Now,

d(E, `n2 ) ≤ 2K2i+3(login)2 ≤ Ki(logi−1n).

The logi−2n in the statement of the theorem comes from the fact that we first applied Proposition
3.8. 2

Recall that the Maurey-Pisier Theorem (see e.g. [11], page 85) states that if X is a Banach
space then `pX and `qX are finitely representable in X where

pX = sup {p|X is of type p},

and
qX = inf {q|X is of cotype q}.

However, Proposition 3.9 implies that the only `p-space which is finitely representable in S(T 2)
is `2. This gives the following result.

Corollary 3.10 The space S(T 2) is of type p for all 1 ≤ p < 2 and of cotype q for all 2 < q.

Before we go on, we need a criterion for a Banach space to be of weak cotype 2. We
shall say that a Banach space X has property (P ) if there is a constant K so that whenever
{x1, x2, . . . , xn} ⊆ X is a finite set with max1≤j≤n |sj| ≤ ‖

∑n
j=1 sjxj‖ for all (sj) ⊆ R, then

√
n ≤ K

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥2
dµ(t)

) 1
2 (3.5)

It was proved by Pisier [14, Proposition 10.8] that if X is of weak cotype 2, then it has
property (P ). It turns out that (P ) characterizes weak cotype 2 spaces. This fact might be known
to specialists but we shall give a short proof here:
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Theorem 3.11 If X has property (P ), then it is of weak cotype 2.

Proof: Let E ⊆ X be a finite dimensional subspace, say dim(E) = 2n. By a result of Bourgain
and Szarek [2, Theorem 2] there is a universal constant C and {x1, x2, . . . , xn} ⊆ X so that for
all (sj) ⊆ R we have

max
1≤j≤n

|sj| ≤ ‖
n∑
j=1

sjxj‖ ≤ C
( n∑
j=1

|sj|2
) 1

2 (3.6)

Using property (P ) we get that

√
n ≤ K

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥2
dµ(t)

) 1
2 (3.7)

where K is the constant of property (P ). Now, (3.7) and the right inequality of (3.6) allow us to
use the well-known formulation of Dvoretzky’s theorem (see e.g. [11], Theorem 4.2, also [16],
pages 25 and 81) to conclude that there is a universal constant η such that if k ≤ ηK−2C−2n,
then there is a k-dimensinal subspace F ⊆ [xj] with d(F, lk2) ≤ 2. From [14, Theorem 10.2] it
now follows that X is of weak cotype 2. 2

We shall say that a sequence (xj)
n
j=1 in a Banach space X is 1-separated if ‖xi − xj‖ ≥ 1

for all 1 ≤ i, j ≤ n, i 6= j. It follows immediately from Theorem 3.11 that if every 1-separated
sequence in X satisfies (3.5), then X is of weak cotype 2.

We are now ready to prove that the symmetric convexified Tsirelson space is a weak cotype
2 space with a symmetric basis which is not of cotype 2. Hence its dual space is a symmetric
space which is of weak type 2 but fails to be of type 2.

Theorem 3.12 The space S(T 2) is a weak cotype 2 space.

Proof: Let (xj)
n
j=1 be a 1-separated sequence in S(T 2). Without loss of generality we may

assume that for all 1 ≤ i ≤ n we have ‖xi‖S(T 2) ≥ 1. We wish to show that (3.5) holds. If K is
a constant which satisfies (1.5) for both T 2 and S(T 2) and (3.4), then by definition we can find a
σ ∈ Π so that:

‖(
n∑
j=1

|Sσxj|2)
1
2‖T 2 = ‖Sσ(

n∑
j=1

|xj|2)‖T 2 ≤ K‖(
n∑
j=1

|xj|2)
1
2‖S(T 2) (3.8)

Since Sσ is an isometry on S(T 2), we can without loss of generality assume that actually
xj = Sσxj for all 1 ≤ j ≤ n.

Put k = log log n and let Pk be the natural projection of T 2 onto the span of (tj)
k
j=1. We now

examine two cases.
Case I: There is a subset I ⊂ {1, 2, · · · , n} with |I| ≥ n

2
so that ‖Pkxj‖`2 ≥ log k for all

j ∈ I .
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Now we compute,

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥2

S(T 2)
dµ(t)

) 1
2 ≥

(1)

1

K
‖(

n∑
j=1

|xj|2)1/2‖S(T 2) ≥
1

K2
‖(

n∑
j=1

|xj|2)1/2‖T 2 (3.9)

≥
(2)

1

K2
‖(

n∑
j=1

|Pkxj|2)1/2‖T 2 ≥
(3)

1

(log k)K3
‖(
∑
j∈I

|Pkxj|2)1/2‖`2

=
1

(log k)K3
(
∑
j∈I

‖Pkxj‖2
`2

)
1
2 ≥

(4)

1

K3
√

2

√
n,

where inequality (1) follows from equation (1.5); (2) from the fact that ‖Pk‖ ≤ 1; (3) from
Proposition 2.7; and (4) from our assumption on case 1.

Case II: There is a subset I ⊂ {1, 2, · · · , n} with |I| ≥ n
2

so that ‖Pkxj‖`2 ≤ log k for all
j ∈ I .

In this case we make the following claim:
Claim: There is a subset J ⊂ I with |J | ≥ n

4
, so that for all j ∈ J ,

‖(I − Pk)xj‖T 2 ≥ 1

8K
.

If not, there is a set J as above with

‖(I − Pk)xj‖T 2 ≤ 1

8K
.

By a standard volume comparison argument (see e.g. [11], Lemma 2.6, or [14], Lemma 4.16)
the cardinality of a set of points which are 1

4K
apart in a ball of radius log k in k-dimensional

Hilbert space is at most (1 + 8K log k)k which by our choice of k is less than or equal to n
4

(at
least for large n). Hence there exist i, j ∈ J , i 6= j so that

‖Pk(xi − xj)‖`2 ≤
1

4K
.

Now we compute using our assumptions and Proposition 2.3:

‖xi − xj‖S(T 2) ≤ K‖xi − xj‖T 2 ≤ K‖Pk(xi − xj)‖T 2 +K‖(I − Pk)xi‖T 2 +K‖(I − Pk)xj‖T 2

≤ K‖Pk(xi − xj)‖`2 +K
1

8K
+K

1

8K
≤ K

1

4K
+

1

4
=

1

2
.

This contradicts our 1-separation assumption. So the claim holds.
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Now by the claim, the beginning of the proof, (1.5) and Proposition 2.7 we get

( ∫ ∥∥ n∑
j=1

gj(t)xj
∥∥2

S(T 2)
dµ(t)

) 1
2 ≥

(1)

1

K2
‖(

n∑
j=1

|xj|2)1/2‖T 2 (3.10)

≥
(2)

1

K2
‖(I − Pk)(

∑
j∈J

|xj|2)1/2‖T 2

≥
(3)

1

K3

( ∫ ∥∥ n∑
j=1

gj(t)(I − Pk)xj
∥∥2

T 2dµ(t)
) 1

2

≥
(4)

1

K5

(∑
j∈J

‖(I − Pk)xj‖2
T 2

)1/2

≥
(5)

1

K5

(∑
j∈J

(
1

8K
)2

)1/2

≥ |J |
1/2

8K6
≥
√
n

16K6
,

where inequality (1) follows from equation (1.5); (2) follows from the fact that ‖I − Pk‖ = 1;
(3) holds because T 2 is type 2 with constant (we assume) less than or equal to K; (4) follows
from the fact that k = log log n and ((I − Pk)xn) is supported on (ti)

∞
i=k and Proposition 2.7;

and (5) is our Claim. This completes the proof. 2

As a corollary we obtain:

Corollary 3.13 Even for Banach lattices property upper H and the weak type 2 property do not
imply the upper H2 property. Similarly, property lower H and the weak cotype 2 property do not
imply the lower H2 property.
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