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CLASSES & OBJECTS 
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User-Defined Types 

§  we want to represent points (x,y) in 2-dimensional space 
§  which data structure to use? 

§  use two variables x and y 
§  store coordinates in a list or tuple of length 2 
§  create user-defined type 

§  we can use Python’s classes to implement new types 
§  Example: 
class Point(object): 
    """represents a point in 2-dimensional space""" 
print Point  # class 
p = Point()  # create new instance of class Point 
print p  # instance 
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Attributes 

§  using dot notation, you can assign values to instance variables 
§  Example:  p.x = 3.0 

  p.y = 4.0 
 
 
 
§  instance variables are called attributes 
§  attributes can be assigned to and read like any variable 
§  Example:  print "(%g, %g)" % (p.x, p.y) 

  distance = math.sqrt(p.x**2 + p.y**2) 
  print distance, "units from the origin" 
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§  rectangles can be represented in many ways, e.g. 
§  width, height, and one corner or the center 
§  two opposing corners 

§  here we choose width, breadth and the lower-left corner 
§  Example: 
class Rectangle(object): 
    "represents a rectangle using attributes width, height, corner” 
box = Rectangle() 
box.width = 5.0 
box.height = 3.0 
box.corner = p corner	
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Representing a Rectangle 
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Instances as Return Values 

§  functions can return instances 
§  Example:  find the center point of a rectangle 
def find_center(box): 
    p = Point() 
    p.x = box.corner.x + box.width / 2.0 
    p.y = box.corner.y + box.height / 2.0 
    return p 
box = Rectangle() 
box.width = 5.0;  box.height = 3.0 
box.corner = Point() 
box.corner.x = 3.0;  box.corner.y = 4.0 
print find_center(box) 
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Objects are Mutable 

§  by assigning to attributes, an object is changed 
§  Example:  update size of rectangle 

 box.width = box.width + 5.0 
 box.height = box.height + 3.0 

§  consequently, also functions can change object arguments 
§  Example: 

 def double_rectangle(box): 
     box.width *= 2 
     box.height *= 2 
 double_rectangle(box) 
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Copying Objects 

§  import module copy to make copies of objects 
§  Example:  import copy 

  new = copy.copy(box) 
 
 
 
 
 
 

§  shallow copy, use copy.deepcopy(object) to also copy Point 
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Debugging User-Defined Types 

§  you can obtain type of an instance by using type(object) 
§  Example:  print type(box) 

§  you can check if an object has an attribute using hasattr 
§  Example:  hasattr(box, "corner") == True 

§  you can get a list of all attributes using dir(object) 
§  Example:  dir(box) 

§  print __doc__ and __module__ for more information! 
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CLASSSES & FUNCTIONS 
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Representing Time 

§  Example:  user-defined type for representing time 
class Time(object): 
  """represents time of day using hours, minutes, seconds""" 
time = Time() 
time.hours = 13 
time.minutes = 57 
time.seconds = 42 
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Pure Functions 

§  pure function   =   does not modify mutable arguments 
§  Example:  add two times 
def add_time(t1, t2): 
  sum = Time() 
  sum.hours = t1.hours + t2.hours 
  sum.minutes = t1.minutes + t2.minutes 
  sum.seconds = t1.seconds + t2.seconds 
  return sum 
time = add_time(time, time) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
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Modifiers 

§  modifiers   =   functions that modify mutable arguments 
§  Example:  incrementing time 
def increment(time, seconds): 
    time.seconds += seconds 
 
 
 
increment(time, 86400) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
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Modifiers 

§  modifiers   =   functions that modify mutable arguments 
§  Example:  incrementing time 
def increment(time, seconds): 
    time.seconds += seconds 
    minutes, time.seconds = divmod(time.seconds, 60) 
    time.minutes += minutes 
    time.hours, time.minutes = divmod(time.minutes, 60) 
increment(time, 86400) 
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds) 
 
§  this was prototype and patch (or trial and error) 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def add_time(t1, t2): 
    return int_to_time(time_to_int(t1) + time_to_int(t2)) 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def increment(time, seconds): 
    t = int_to_time(seconds + time_to_int(time)) 
    time.seconds = t.seconds;  time.minutes = t.minutes 
    time.hours = t.hours 
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Prototyping vs Planning 

§  alternative to protyping is planned development 
§  high-level observation:   time representable by just seconds 
§  Example:  refactoring function working with time 
def time_to_int(time): 
    return time.seconds + 60 * (time.minutes + 60 * time.hours) 
def int_to_time(seconds): 
    time = Time();  minutes, time.seconds = divmod(seconds, 60) 
    time.hours, time.minutes = divmod(minutes, 60);   return time 
def increment(time, seconds): 
    return int_to_time(seconds + time_to_int(time)) 
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Debugging using Invariants 

§  invariant  =   requirement that is always true 
§  assertion  =   statement of an invariant using assert 
§  Example:  check that time is valid 
def valid_time(time): 
    if time.hours < 0 or time.minutes < 0 or time.seconds < 0: 
        return False 
    return time.minutes < 60 and time.seconds < 60 
def add_time(t1, t2): 
    assert valid_time(t1) and valid_time(t2) 
    return int_to_time(time_to_int(t1) + time_to_int(t2)) 
§  also useful to check before return value 
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CLASSES & METHODS 
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Object-Oriented Features 

§  object-oriented programming in a nutshell: 
§  programs consists of class definitions and functions 
§  classes describe real or imagined objects 
§  most functions and computations work on objects 

§  so far we have only used classes to store attributes 
§  i.e., functions were not linked to objects 

§  methods   =   functions defined inside a class definition 
§  first argument is always the object the method belongs to 
§  calling by using dot notation 
§  Example:  "Slartibartfast".count("a") 
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def print_time(time): 
        t = (time.hours, time.minutes, time.seconds) 
        print "%02dh %02dm %02ds" % t 
 
def print_time(time): 
    t = (time.hours, time.minutes, time.seconds) 
    print "%02dh %02dm %02ds" % t  
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def print_time(self): 
        t = (self.hours, self.minutes, self.seconds) 
        print "%02dh %02dm %02ds" % t 
 
def print_time(time): 
    t = (time.hours, time.minutes, time.seconds) 
    print "%02dh %02dm %02ds" % t 
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Printing Objects 

§  printing can be done by a normal function 
§  better done with a method 
§  Example: 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def print_time(self): 
        t = (self.hours, self.minutes, self.seconds) 
        print "%02dh %02dm %02ds" % t 
end = Time() 
end.hours = 12;  end.minutes = 15;  end.seconds = 37 
Time.print_time(end)  # what really happens 
end.print_time()   # how to write it! 
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Incrementing as a Method 

§  Example:  add increment as a method 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def time_to_int(self): 
        return self.seconds + 60 * (self.minutes + 60 * self.hours) 
    def int_to_time(self, seconds): 
        minutes, self.seconds = divmod(seconds, 60) 
        self.hours, self.minutes = divmod(minutes, 60) 
    def increment(self, seconds): 
        return self.int_to_time(seconds + self.time_to_int()) 
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Comparing with Methods 

§  Example:  add is_after as a method 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def time_to_int(self): 
        return self.seconds + 60 * (self.minutes + 60 * self.hours) 
    def int_to_time(self, seconds): 
        minutes, self.seconds = divmod(seconds, 60) 
        self.hours, self.minutes = divmod(minutes, 60) 
    def increment(self, seconds): 
        return self.int_to_time(seconds + self.time_to_int()) 
    def is_after(self, other): 
        return self.time_to_int() > other.time_to_int()    
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Initializing Objects 

§  special method __init__(self, …) to create new objects 
§  usually first method written for any new class! 
§  Example:  initialize Time objects using __init__ 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def __init__(self, hours, minutes, seconds): 
        self.hours = hours 
        self.minutes = minutes 
        self.seconds = seconds 
start = Time(12, 23, 42) 
start = Time() 
start.hours = 12;  start.minutes = 23; start.seconds = 42 
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String Representation of Objects 

§  special method __str__(self) to convert objects to strings 
§  Example:  print Time objects using __str__ 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def __init__(self, hours, minutes, seconds): 
        self.hours = hours 
        self.minutes = minutes 
        self.seconds = seconds 
   def __str__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "%dh %dm %ds" % t 
print Time(7, 42, 23) 
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Representation of Objects 

§  special method __repr__(self) to represent objects 
§  Example:  make Time objects more usable in lists 
class Time(object): 
    """represents time of day using hours, minutes, seconds""" 
    def __str__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "%dh %dm %ds" % t 
    def __repr__(self): 
        t = (self.hours, self.minutes, self.seconds) 
        return "Time(%s, %s, %s)" % t 
print [Time(7, 42, 23), Time(12, 23, 42)] 
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Representation of Objects 

§  special method __repr__(self) to represent objects 
§  Example:  make Time objects more usable in lists 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def as_tuple(self): 
        return (self.hours, self.minutes, self.seconds) 
    def __str__(self): 
        return ”%dh %dm %ds" % self.as_tuple() 
    def __repr__(self): 
        return "Time(%s, %s, %s)" % self.as_tuple() 
print [Time(7, 42, 23), Time(12, 23, 42)] 
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Overloading Operators 

§  special method __add__(self, other) to overload “+” operator 
§  likewise, you can use __mul__(self, other) etc. 
§  Example:  add Time objects using __add__ 
class Time(object): 
    """represents time of day using hours, minutes, seconds""” 
    def __add__(self, other): 
        seconds = self.time_to_int() + other.time_to_int() 
        return self.int_to_time(seconds) 
t1 = Time(2, 40, 19) 
t2 = Time(10, 2, 23) 
print t1 + t2 
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Type-Based Dispatch 

§  we want to add both Time objects and seconds 
§  use isinstance(object, class) to determine type of argument 
§  Example: 
class Time(object): 
    def __add__(self, other): 
        if isinstance(other, Time):   return self.add_time(other) 
        else:                 return self.add_seconds(other) 
    def add_time(self, other): 
        seconds = self.time_to_int() + other.time_to_int() 
        return self.int_to_time(seconds) 
    def add_seconds(self, seconds): 
        return self.int_to_time(seconds + self.time_to_int()) 
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Polymorphism 

§  polymorphic   =   working on different argument types 

§  Examples: 
§  histogram(s) can be used for lists & tuples of elements, that 

can be used as dictionary keys 

§  sum(t) can be used for lists & tuples of elements, for which 
“+” works, i.e., also for Time 

§  to use e.g. Time as dictionary keys, implement __hash__(self) 
§  important that returned integer identical for identical objects 
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Debugging by Introspection 

§  hard to work with objects where attributes are added 
§  try to always use __init__(self, …) to create attributes 
§  do not create attributes (or methods) from “outside” 
 
§  you can use dir(object) to get list of attributes and methods 
 
§  special attribute __dict__ maps attributes to values 
§  Example:  print all atributes and their values and types 
for var, value in time.__dict__.items(): 
    print "%s -> %s (%s)" % (var, value, type(value)) 
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INHERITANCE 
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Card Objects 

§  Goal:  represent cards as objects 
§  Design: 

§  represent Spades, Hearts, Diamonds, Clubs by 3, 2, 1, 0 
§  represent different cards by 1 … 10 and 11, 12, 13 

§  Example: 
class Card(object): 
    """represents a standard playing card""" 
    def __init__(self, suit = 2, rank = 13)  # Queen of Hearts 
        self.suit = suit 
        self.rank = rank 
queen_of_hearts = Card() 
ten_of_spades = Card(3, 10) 
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Class Attributes 

§  class attribute   =   same for each object of a given class 
§  class attributes are defined by assignments inside the class 
§  Example: 
class Card(object): 
    """represents a standard playing card""" 
    def __init__(self, suit = 2, rank = 13)  # Queen of Hearts 
        self.suit = suit 
        self.rank = rank 
    suits = ["Clubs", "Diamonds", "Hearts", "Spades"] 
    ranks = [None, "Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10", 
                 "Jack", "Queen", "King"] 
card = Card(suits.find("Diamonds"), ranks.find("Ace")) 
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Comparing Cards 

§  special method __cmp__(self, other) for comparing values 
§  return value 0 for equality, > 0 for greater, < 0 for smaller 
§  used by built-in function cmp(x, y) 
§  Example: 
class Card(object): 
    … 
    def __cmp__(self, other): 
        if self.suit > other. suit:   return 1 
        if self.suit < other. suit:   return -1 
        if self.rank > other. rank:  return 1 
        if self.rank < other. rank:  return -1 
        return 0 
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Comparing Cards 

§  special method __cmp__(self, other) for comparing values 
§  return value 0 for equality, > 0 for greater, < 0 for smaller 
§  used by built-in function cmp(x, y) 
§  Example: 
class Card(object): 
    … 
    def __cmp__(self, other): 
        return cmp((self.suit, self.rank), (other.suit, other.rank)) 
print queen_of_hearts > ten_of_spades  # False 
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Decks 

§  Goal:  represent decks of cards 
§  Design:  use a list of cards as attribute 
§  Example: 
class Deck(object): 
    """represents a deck as a list of cards""" 
    def __init__(self): 
        self.cards = [] 
        for suit in range(len(Card.suits)): 
            for rank in range(1, len(Card.ranks)): 
                card = Card(suit, rank) 
                self.cards.append(card) 
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Printing Decks 

§  printing can be done using the __str__(self) method 
§  Example: 
class Deck(object): 
    """represents a deck as a list of cards""" 
    … 
    def __str__(self): 
        res = [] 
        for card in self.cards: 
            res.append(str(car)) 
        return "\n".join(res) 
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Popping and Adding a Card 

§  removing and adding are basic operations 
§  both can be implemented using list methods 
§  Example: 
class Deck(object): 
    """represents a deck as a list of cards""" 
    … 
    def pop_card(self): 
        return self.cards.pop() 
    def add_card(self, card): 
        self.cards.append(card) 
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Shuffle a Deck 

§  likewise, functionality like shuffling can be implemented easily 
§  idea is to use shuffle(list) from random module 
§  Example: 
import random 
class Deck(object): 
    """represents a deck as a list of cards""" 
    … 
    def shuffle(self): 
        random.shuffle(self.cards) 
deck = Deck() 
deck.shuffle() 
print deck 
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Inheritance 

§  inheritance   =   define new class as modification of old class 
§  old class is called parent, new class is called child 
§  useful e.g. for representing a hand based on a deck 
§  Example: 
class Hand(Deck): 
    """represents a hand of playing cards""" 
    def __init__(self, label = ""): 
        self.cards = [] 
        self.label = label 
§  Hand inherits all methods (including __init__) from Deck 
§  BUT:  we do not want all cards in a hand 
§  Solution:  override __init__ method 
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Move Cards from Deck to Hand 

§  cards can be moved using pop_card and add_card 
§  Example: 
deck = Deck();  hand = Hand("my hand") 
hand.add_card(deck.pop_card()) 
§  tedious for giving a hand – better add a method to Deck 
§  Example: 
class Deck(object): 
    """represents a deck as a list of cards""" 
    … 
    def move_cards(self, hand, num): 
        for i in range(num): 
            hand.add_card(self.pop_card()) 
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Class Diagrams 

§  class diagram   =   family tree and friends of classes 
§  in contrast to state diagrams, class diagrams are static 
§  Example: 

June 2009 45 

Deck 

Hand 

Card *	



is-a 

has-a 



Debugging and Inheritance 

§  harder to determine control flow when using inheritance 

§  add print statements to methods to see which is called 

§  alternatively, use the following method: 
def find_defining_class(obj, meth_name): 
    for ty in type(obj).mro() 
        if meth_name in ty.__dict__: 
            return ty 

§  whenever you override a method, use the same contract 
§  same pre-conditions, same post-conditions, same argument list 
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The End 

§  we are finished with Python for this course 

§  you should understand and be able to use all concepts 

§  use some time to develop your Python skill 
§  list comprehensions, libraries for networking, … 

§  scratch your itches with Python 

§  … and if you continue with Programming B … 
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