
DM502
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM502/!

CLASSES & OBJECTS

June 2009 2

User-Defined Types

§  we want to represent points (x,y) in 2-dimensional space
§  which data structure to use?

§  use two variables x and y
§  store coordinates in a list or tuple of length 2
§  create user-defined type

§  we can use Python’s classes to implement new types
§  Example:
class Point(object):
 """represents a point in 2-dimensional space"""
print Point # class
p = Point() # create new instance of class Point
print p # instance

June 2009 3

Attributes

§  using dot notation, you can assign values to instance variables
§  Example: p.x = 3.0

 p.y = 4.0

§  instance variables are called attributes
§  attributes can be assigned to and read like any variable
§  Example: print "(%g, %g)" % (p.x, p.y)

 distance = math.sqrt(p.x**2 + p.y**2)
 print distance, "units from the origin"

June 2009 4

p
Point

x 3.0	

y	

 4.0	

§  rectangles can be represented in many ways, e.g.
§  width, height, and one corner or the center
§  two opposing corners

§  here we choose width, breadth and the lower-left corner
§  Example:
class Rectangle(object):
 "represents a rectangle using attributes width, height, corner”
box = Rectangle()
box.width = 5.0
box.height = 3.0
box.corner = p corner	

Point

x 3.0	

y	

 4.0	

box	

Rectangle

width	

 5.0	

height	

 3.0	

Representing a Rectangle

June 2009 5

Instances as Return Values

§  functions can return instances
§  Example: find the center point of a rectangle
def find_center(box):
 p = Point()
 p.x = box.corner.x + box.width / 2.0
 p.y = box.corner.y + box.height / 2.0
 return p
box = Rectangle()
box.width = 5.0; box.height = 3.0
box.corner = Point()
box.corner.x = 3.0; box.corner.y = 4.0
print find_center(box)

June 2009 6

Objects are Mutable

§  by assigning to attributes, an object is changed
§  Example: update size of rectangle

 box.width = box.width + 5.0
 box.height = box.height + 3.0

§  consequently, also functions can change object arguments
§  Example:

 def double_rectangle(box):
 box.width *= 2
 box.height *= 2
 double_rectangle(box)

June 2009 7

Copying Objects

§  import module copy to make copies of objects
§  Example: import copy

 new = copy.copy(box)

§  shallow copy, use copy.deepcopy(object) to also copy Point

June 2009 8

corner	

Point

x 3.0	

y	

 4.0	

box	

Rectangle

width	

 5.0	

height	

 3.0	

corner	

new	

Rectangle

width	

 5.0	

height	

 3.0	

Debugging User-Defined Types

§  you can obtain type of an instance by using type(object)
§  Example: print type(box)

§  you can check if an object has an attribute using hasattr
§  Example: hasattr(box, "corner") == True

§  you can get a list of all attributes using dir(object)
§  Example: dir(box)

§  print __doc__ and __module__ for more information!

June 2009 9

CLASSSES & FUNCTIONS

June 2009 10

Representing Time

§  Example: user-defined type for representing time
class Time(object):
 """represents time of day using hours, minutes, seconds"""
time = Time()
time.hours = 13
time.minutes = 57
time.seconds = 42

June 2009 11

time	

Time

hours	

 13	

minutes	

 57	

seconds	

 42	

Pure Functions

§  pure function = does not modify mutable arguments
§  Example: add two times
def add_time(t1, t2):
 sum = Time()
 sum.hours = t1.hours + t2.hours
 sum.minutes = t1.minutes + t2.minutes
 sum.seconds = t1.seconds + t2.seconds
 return sum
time = add_time(time, time)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 12

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 13

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds
 minutes, time.seconds = divmod(time.seconds, 60)
 time.minutes += minutes
 time.hours, time.minutes = divmod(time.minutes, 60)
increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

§  this was prototype and patch (or trial and error)

June 2009 14

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def add_time(t1, t2):
 return int_to_time(time_to_int(t1) + time_to_int(t2))

June 2009 15

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 t = int_to_time(seconds + time_to_int(time))
 time.seconds = t.seconds; time.minutes = t.minutes
 time.hours = t.hours

June 2009 16

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 return int_to_time(seconds + time_to_int(time))

June 2009 17

Debugging using Invariants

§  invariant = requirement that is always true
§  assertion = statement of an invariant using assert
§  Example: check that time is valid
def valid_time(time):
 if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
 return False
 return time.minutes < 60 and time.seconds < 60
def add_time(t1, t2):
 assert valid_time(t1) and valid_time(t2)
 return int_to_time(time_to_int(t1) + time_to_int(t2))
§  also useful to check before return value

June 2009 18

CLASSES & METHODS

June 2009 19

Object-Oriented Features

§  object-oriented programming in a nutshell:
§  programs consists of class definitions and functions
§  classes describe real or imagined objects
§  most functions and computations work on objects

§  so far we have only used classes to store attributes
§  i.e., functions were not linked to objects

§  methods = functions defined inside a class definition
§  first argument is always the object the method belongs to
§  calling by using dot notation
§  Example: "Slartibartfast".count("a")

June 2009 20

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

June 2009 21

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t
 June 2009 22

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t
end = Time()
end.hours = 12; end.minutes = 15; end.seconds = 37
Time.print_time(end) # what really happens
end.print_time() # how to write it!

June 2009 23

Incrementing as a Method

§  Example: add increment as a method
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def time_to_int(self):
 return self.seconds + 60 * (self.minutes + 60 * self.hours)
 def int_to_time(self, seconds):
 minutes, self.seconds = divmod(seconds, 60)
 self.hours, self.minutes = divmod(minutes, 60)
 def increment(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())

June 2009 24

Comparing with Methods

§  Example: add is_after as a method
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def time_to_int(self):
 return self.seconds + 60 * (self.minutes + 60 * self.hours)
 def int_to_time(self, seconds):
 minutes, self.seconds = divmod(seconds, 60)
 self.hours, self.minutes = divmod(minutes, 60)
 def increment(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())
 def is_after(self, other):
 return self.time_to_int() > other.time_to_int()

June 2009 25

Initializing Objects

§  special method __init__(self, …) to create new objects
§  usually first method written for any new class!
§  Example: initialize Time objects using __init__
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def __init__(self, hours, minutes, seconds):
 self.hours = hours
 self.minutes = minutes
 self.seconds = seconds
start = Time(12, 23, 42)
start = Time()
start.hours = 12; start.minutes = 23; start.seconds = 42

June 2009 26

String Representation of Objects

§  special method __str__(self) to convert objects to strings
§  Example: print Time objects using __str__
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def __init__(self, hours, minutes, seconds):
 self.hours = hours
 self.minutes = minutes
 self.seconds = seconds
 def __str__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "%dh %dm %ds" % t
print Time(7, 42, 23)

June 2009 27

Representation of Objects

§  special method __repr__(self) to represent objects
§  Example: make Time objects more usable in lists
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def __str__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "%dh %dm %ds" % t
 def __repr__(self):
 t = (self.hours, self.minutes, self.seconds)
 return "Time(%s, %s, %s)" % t
print [Time(7, 42, 23), Time(12, 23, 42)]

June 2009 28

Representation of Objects

§  special method __repr__(self) to represent objects
§  Example: make Time objects more usable in lists
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def as_tuple(self):
 return (self.hours, self.minutes, self.seconds)
 def __str__(self):
 return ”%dh %dm %ds" % self.as_tuple()
 def __repr__(self):
 return "Time(%s, %s, %s)" % self.as_tuple()
print [Time(7, 42, 23), Time(12, 23, 42)]

June 2009 29

Overloading Operators

§  special method __add__(self, other) to overload “+” operator
§  likewise, you can use __mul__(self, other) etc.
§  Example: add Time objects using __add__
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def __add__(self, other):
 seconds = self.time_to_int() + other.time_to_int()
 return self.int_to_time(seconds)
t1 = Time(2, 40, 19)
t2 = Time(10, 2, 23)
print t1 + t2

June 2009 30

Type-Based Dispatch

§  we want to add both Time objects and seconds
§  use isinstance(object, class) to determine type of argument
§  Example:
class Time(object):
 def __add__(self, other):
 if isinstance(other, Time): return self.add_time(other)
 else: return self.add_seconds(other)
 def add_time(self, other):
 seconds = self.time_to_int() + other.time_to_int()
 return self.int_to_time(seconds)
 def add_seconds(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())

June 2009 31

Polymorphism

§  polymorphic = working on different argument types

§  Examples:
§  histogram(s) can be used for lists & tuples of elements, that

can be used as dictionary keys

§  sum(t) can be used for lists & tuples of elements, for which
“+” works, i.e., also for Time

§  to use e.g. Time as dictionary keys, implement __hash__(self)
§  important that returned integer identical for identical objects

June 2009 32

Debugging by Introspection

§  hard to work with objects where attributes are added
§  try to always use __init__(self, …) to create attributes
§  do not create attributes (or methods) from “outside”

§  you can use dir(object) to get list of attributes and methods

§  special attribute __dict__ maps attributes to values
§  Example: print all atributes and their values and types
for var, value in time.__dict__.items():
 print "%s -> %s (%s)" % (var, value, type(value))

June 2009 33

INHERITANCE

June 2009 34

Card Objects

§  Goal: represent cards as objects
§  Design:

§  represent Spades, Hearts, Diamonds, Clubs by 3, 2, 1, 0
§  represent different cards by 1 … 10 and 11, 12, 13

§  Example:
class Card(object):
 """represents a standard playing card"""
 def __init__(self, suit = 2, rank = 13) # Queen of Hearts
 self.suit = suit
 self.rank = rank
queen_of_hearts = Card()
ten_of_spades = Card(3, 10)

June 2009 35

Class Attributes

§  class attribute = same for each object of a given class
§  class attributes are defined by assignments inside the class
§  Example:
class Card(object):
 """represents a standard playing card"""
 def __init__(self, suit = 2, rank = 13) # Queen of Hearts
 self.suit = suit
 self.rank = rank
 suits = ["Clubs", "Diamonds", "Hearts", "Spades"]
 ranks = [None, "Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10",
 "Jack", "Queen", "King"]
card = Card(suits.find("Diamonds"), ranks.find("Ace"))

June 2009 36

Comparing Cards

§  special method __cmp__(self, other) for comparing values
§  return value 0 for equality, > 0 for greater, < 0 for smaller
§  used by built-in function cmp(x, y)
§  Example:
class Card(object):
 …
 def __cmp__(self, other):
 if self.suit > other. suit: return 1
 if self.suit < other. suit: return -1
 if self.rank > other. rank: return 1
 if self.rank < other. rank: return -1
 return 0

June 2009 37

Comparing Cards

§  special method __cmp__(self, other) for comparing values
§  return value 0 for equality, > 0 for greater, < 0 for smaller
§  used by built-in function cmp(x, y)
§  Example:
class Card(object):
 …
 def __cmp__(self, other):
 return cmp((self.suit, self.rank), (other.suit, other.rank))
print queen_of_hearts > ten_of_spades # False

June 2009 38

Decks

§  Goal: represent decks of cards
§  Design: use a list of cards as attribute
§  Example:
class Deck(object):
 """represents a deck as a list of cards"""
 def __init__(self):
 self.cards = []
 for suit in range(len(Card.suits)):
 for rank in range(1, len(Card.ranks)):
 card = Card(suit, rank)
 self.cards.append(card)

June 2009 39

Printing Decks

§  printing can be done using the __str__(self) method
§  Example:
class Deck(object):
 """represents a deck as a list of cards"""
 …
 def __str__(self):
 res = []
 for card in self.cards:
 res.append(str(car))
 return "\n".join(res)

June 2009 40

Popping and Adding a Card

§  removing and adding are basic operations
§  both can be implemented using list methods
§  Example:
class Deck(object):
 """represents a deck as a list of cards"""
 …
 def pop_card(self):
 return self.cards.pop()
 def add_card(self, card):
 self.cards.append(card)

June 2009 41

Shuffle a Deck

§  likewise, functionality like shuffling can be implemented easily
§  idea is to use shuffle(list) from random module
§  Example:
import random
class Deck(object):
 """represents a deck as a list of cards"""
 …
 def shuffle(self):
 random.shuffle(self.cards)
deck = Deck()
deck.shuffle()
print deck

June 2009 42

Inheritance

§  inheritance = define new class as modification of old class
§  old class is called parent, new class is called child
§  useful e.g. for representing a hand based on a deck
§  Example:
class Hand(Deck):
 """represents a hand of playing cards"""
 def __init__(self, label = ""):
 self.cards = []
 self.label = label
§  Hand inherits all methods (including __init__) from Deck
§  BUT: we do not want all cards in a hand
§  Solution: override __init__ method

June 2009 43

Move Cards from Deck to Hand

§  cards can be moved using pop_card and add_card
§  Example:
deck = Deck(); hand = Hand("my hand")
hand.add_card(deck.pop_card())
§  tedious for giving a hand – better add a method to Deck
§  Example:
class Deck(object):
 """represents a deck as a list of cards"""
 …
 def move_cards(self, hand, num):
 for i in range(num):
 hand.add_card(self.pop_card())

June 2009 44

Class Diagrams

§  class diagram = family tree and friends of classes
§  in contrast to state diagrams, class diagrams are static
§  Example:

June 2009 45

Deck

Hand

Card *	

is-a

has-a

Debugging and Inheritance

§  harder to determine control flow when using inheritance

§  add print statements to methods to see which is called

§  alternatively, use the following method:
def find_defining_class(obj, meth_name):
 for ty in type(obj).mro()
 if meth_name in ty.__dict__:
 return ty

§  whenever you override a method, use the same contract
§  same pre-conditions, same post-conditions, same argument list

June 2009 46

The End

§  we are finished with Python for this course

§  you should understand and be able to use all concepts

§  use some time to develop your Python skill
§  list comprehensions, libraries for networking, …

§  scratch your itches with Python

§  … and if you continue with Programming B …

June 2009 47

