
DM 503 Programming B

Spring 2012 Re-Exam Project

Department of Mathematics and Computer Science
University of Southern Denmark

May 14, 2012

2

Introduction
The purpose of the project for DM503 is to try in practice the use of recursion
and object-oriented program design.

Please make sure to read this entire note before starting your work on the
project. Pay close attention to the sections on deadlines, deliverables, and
exam rules.

Exam Rules
Thisproject is an exam. Thus, the project must be done individually, and no
cooperation is allowed beyond what is explicitly stated in this document.

Deliverables

• A short project report in PDF format (at least 5-6 pages without front
page and appendix) has to be delivered. This report has to contain the
following 7 sections:

– front page

– specification

– design

– implementation

– testing

– conclusion

– appendix

• All source code.

The deliverables have to be delivered using Blackboard’s Assignment Hand-
In functionality. Delivering by e-mail or to the teacher is only considered
acceptable in case Blackboard is down before the deadline.

Deadline

June 18, 2012, 12:00

3

The Problem

Your task is to implement strategies for heroes and monsters in a simplified
version of the game Rogue1.

More precisely, you have to implement the classes Rogue, Monster, and
SpeedyRogue as described in more detail below.

The Game

Rogue is supposedly the first “graphical” adventure game ever. It was very
popular with Unix users at universities at the beginning of the 1980s. The
goal of Rogue is “to descend into the Dungeons of Doom, defeat monsters and
find treasure and come back with the amulet of Yendor using its levitation
capabilities”. The dungeon features monsters, which will attack the player
character when entering a room. For the player character to be in optimal
health when facing these monsters, a good strategy is to avoid fighting the
monsters for as long as possible. This gives rise to a very interesting search
problems over a graph representation of the dungeon. These problems are
the background for the tasks of this project.

In our simplified version, the game is played on a N × N playing field,
where the hero is represented by the sign @ and monsters are represented by
uppercase letters (A–Z). There is only exactly one hero and one monster on
each playing field. If the monster catches the hero, it defeats him and the
game is ended.

The hero and the monster move by turns. In each turn, first the monster
moves, then the hero. Each player (hero / monster) can stay on his current
position or move to one of the neighboring cells. There are three types of
cells: rooms, hallways, and walls. They are represented by the characters ‘.’
(dot), ‘+’ (plus), and ‘ ’ (space), respectively.

If a player stands in a room cell, he can move to up to eight neighbor
fields (north, northeast, east, southeast, south, southwest, west, northwest
- where north is up and east is right). If a player stands in a hallway cell,
he can move to up to four neighbor fields (north, east, south, west) but not
diagonally. It is not possible to move onto or through walls.

The home page of the course contains a number of possible playing fields to
test your strategies.

1http://en.wikipedia.org/wiki/Rogue_(computer_game)

4

+ + + + + A .

+ +

. +

. @ . . +

. . I + @

. +

. +

+ +

+ +

+ + + + +

Above there are two 10x10 playing fields. In case of the left field, the
hero can escape from the monster forever by running into the hallway (and if
the monster follows across the room to get to the other end of the hallway).
In case of the right field, the monster can always catch the hero by moving
towards the hero and trapping him in a corner. Note that a playing field
can easily be modelled as a graph where each node represents a cell of the
playing field and each edge between two nodes represents that it is allowed
to move from one of these nodes to the other one in one step.

Strategy of the Monster The goal of the monster is, of course, to catch
and eat the hero. A natural strategy of the monster is to compute for each
turn the shortest paths towards the hero and take one step along one of these
paths. Note that there can be more than one shortest path. In that case, the
monster should select the new position with the least Euclidian distance to
the hero. That is not necessarily an optimal strategy. This can for example
be seen in the left playing field below where the monster B can be sure to
catch the hero by moving northeast (NE) while moving east (E) will allow the
monster to flee into the hallway. On the right playing field , the monster can
only be sure to catch the hero by moving E, not by moving NE or southeast
(SE).

+ + + + + + + + + + + + +

+ + + +

. + +

. + +

. . . . @ . . + . . C . . @ . . +

. . B + +

. + +

. + + + + +

. + +

. + + + + +

5

Your first task is to implement the strategy described above for the monster
(see description of the class Monster below).

Strategy of the Hero The strategy of the hero is to avoid the monster
as long as possible. A natural strategy of the hero is to identify the neighbor
cells where the hero can move in the next step. For each of these neighbor
cells, the length of the shortest path to the monster can be computed. The
hero then moves to a cell which has maximal distance to the monster. Note
that there can be more than one cell with a maximal shortest path to the
monster. In that case, the hero should select one of those neighbor cells
which offers the most possible moves in the next turn, i.e., which has the
maximal number of neighbors among all cells with maximal distance from
the monster. It is easy to see that also this strategy is not optimal.

.

.

. @ .

. + + +

. +

. + + +

. J

.

.

.

In case of the above playing field, the hero can only avoid the monster forever
if he moves SE instead of flying from the monster. Then in the second turn,
he can disappear into the corridor.

Your second task is to implement the strategy described above for the hero
(see description of the class Rogue below).

Players on Steroids In the full game Rogue, there is a rich variety of
things to pick up. Gold, food, weapons, armor, and, of course, magical
potions. In our simplified game, there is only one type of potion – called
Potion of Speed and denoted by the character ‘s’. When a player moves onto
a cell with a potion, he immediately consumes the potion. In all following
turns, he can now move twice instead of once. If a player consume more than
one potion, for each potion, one move per turn is added. Thus, if a player
were to consume three potions, he could move three steps in each turn. The
existence of potions changes what is a good strategy and what not.

6

. A .

.

.

. s

. . . . @

.

.

.

.

.

In case of the above playing field, the hero should move towards the mon-
ster in the first move to consume the potion. Afterwards, the hero can easily
avoid the monster forever.

Your third task is to implement a second strategy for the (see description of
the class SpeedyRogue below) that tries to reach a speed potion if it can do
so before the monster gets there.

Input-format Each file contains a playing field, where the first line de-
notes N (the size of the NxN playing field contained in the file) and each
following line denotes all playing fields by 2N characters as defined above.
The characters denoting a cell are separated by a space while the line is ended
by a newline.

10

+ + + + + + + +

+ +

. +

. +

. . . . @ . . +

. . B +

. +

. + + +

.

.

A room is a connected block of room cells. Because of ministerial regulations,
rooms may not be directly next to each other. Rooms are connected by at
least one hallway cell. There is exactly one monster and one hero per playing
field and they both start in a room (not necessarily the same).

7

The Task Together with this description, the course home page contains
the following four template files:

Position.java This class represents a position on the playing field. The
most important methods are getX() (returning the horizontal coordi-
nate of the position), getY() (returning the vertical component of the
position), and equals(...) to compare the current position with a
given other position.

Dungeon.java This class represents a playing field. It is possible to ob-
tain its size (size()), get the hero’s position (getRoguePosition()),
get the monster’s position (getMonsterPosition()), and a (possibly
empty) set of the positions of potions (getPotionPositions()).

Furthermore, it is possible to find out wheter it is allowed to place a
player at a certain position (i.e., whether we have a room or a hallway
cell), whether a given position is a room cell, whether a given position
is a hallway cell, and whether it is allowed to move from one position
to another in accordance to the rules of the game.

AbstractCharacter.java This is an abstract class that represents a player
in the game, i.e., a hero or a monster. A player knows the playing
field and his position and through the playing field also the position of
the opponent. Furthermore, every player has to implement a method
move(int remainingMoves), that is called each time it is this player’s
turn to move. The method should return the new position the player
wants to move to. The argument denotes the number of moves this
player can take before it is the opponents turn. Unless the player has
consumed at least one potion, this is always 0.

GameEngine.java This file handles runs the game, i.e., it reads the playing
field from a file, constructs the two players, and controls when which
player can move. It stops when the hero is caught. This class contains
the only main method of the project.

Note that positions that the positions mentioned above have their origin in
a starting point at the top-left of the playing field and grow to the right and
down. The top-left cell has the position (0,0).

It is not necessary (and also not possible with the contents of the course)
to understand all details in the file GameEngine.java. Especially the loading
of the players uses Java’s reflection framework which has not been handled
in class. The good news is that it is not necessary to understand this class
to be able to complete the project.

8

It is in general NOT ALLOWED to CHANGE the template files!

Your task is to write three classes Monster, Rogue, and SpeedyRogue that
both inherit from AbstractCharacter and implement the strategies de-
scribed above. To this end, you should use the methods of the playing field
(Dungeon), in particular the method isLegalMove, to build a graph over the
playing field (as described above) and implement breadth-first search (BFS)
to compute the length of the shortest path between to given cells of the
playing field.

A good idea is to let SpeedyRogue inherit from Rogue in order to reuse
the move method for the case that one does not want to (or cannot) reach a
potion. In this case, the method move(int remainingMoves) of Rogue can
be called by super.move(remainingMoves).

It is a part of your task to use classes and source code that you have not
written yourself (nor that you necessarily completely understand). This is a
very relevant setting for the application of object-oriented programming.

When you have implemented the strategies described above for both the
monster and for the hero, the game can be started as follows:
java GameEngine dungeonA.txt Rogue Monster

where dungeonA.txt can be replaced by another playing field and where
you want to test your strategies for the hero i Rouge.java and the monster
Monster.java. If you want to use the more advanced strategy for the hero,
use SpeedyRouge the second argument to GameEngine.

