
Modification of Records

How to handle the following operations
on the record level?
1.  Insertion
2.  Deletion
3.  Update

1

1. Insertion

  Easy case: records not in sequence
  Insert new record at end of file
  If records are fixed-length, insert new

record in deleted slot

  Difficult case: records are sorted
  Find position and slide following records
  If records are sequenced by linking, insert

overflow blocks

2

2. Deletion

a.  Immediately reclaim space by shifting
other records or removing overflows

b.  Mark deleted and list as free for re-use
  Tradeoffs:

  How expensive is immediate reclaim?
  How much space is wasted?

3

Problem with Deletion
  Dangling pointers:

  When using physical addresses:

  When using logical addresses:

4

R1 ?

Never reused May be reused

ID LOC

7788

Never reuse
ID 7788 nor
space in the map

3. Update

  If records are fixed-length and the
order is not affected:
  Fetch the record, modify it, write it back

  Otherwise:
  Delete the old record
  Insert the new record overwriting the

tombstones from the deletion

5

Pointer Swizzling

  Swizzling = replacement of physical
addresses by memory addresses when
loading blocks into memory

  Automatic Swizzling: swizzle all
addresses when loading a block
(need to swizzle all pointer from and to
the block)

  Swizzling on Demand: use addresses
which are invalid as memory addresses

6

Data Organizaton

  There are millions of ways to organize
the data on disk

  Flexibility Space Utilization

 Complexity Performance

7

Summary 9

More things you should know:
  Memory Hierarchy
  Storage on harddisks
  Values, Records, Blocks, Files
  Storing and modifying records

8

Index Structures

9

Finding Records

  How do we find the records for a query?
  Example: SELECT * FROM Sells
  Need to examine every block in every file
  Group blocks into files by relation!
  Example: SELECT * FROM Sells

 WHERE price = 20;
  Need to examine every block in the file

10

Finding Records

  Use of indexes allows to narrow search
to (almost) only the relevant blocks

11

Index
Blocks
Holding
records

Value Matching records

  Indexes can be dense or sparse

Dense Index

12

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40

50
60
70
80

90
100
110
120

Sparse Index

13

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70

90
110
130
150

170
190
210
230

2nd level

10
90
170
250

330
410
490
570

40
30

  Delete 40

Deletion from Sparse Index

14

20
10

60
50

80
70

10
30
50
70

90
110
130
150

40
30 30

  Delete 30

Deletion from Sparse Index

15

20
10

60
50

80
70

10
30
50
70

90
110
130
150

40
30
40
30
40
40

10
40
50
70

90
110
130
150

  Delete 30 & 40

Deletion from Sparse Index

16

20
10

60
50

80
70

10
30
50
70

90
110
130
150

40
30
40
30

10
50
70

90
110
130
150

  Insert 35

Insertion into Sparse Index

17

20
10

60
50

80
70

10
30
50
70

90
110
130
150

30
35
30

  Insert 25

Insertion into Sparse Index

18

20
10

60
50

80
70

10
30
50
70

90
110
130
150

35
30

25

Sparse vs Dense

  Sparse uses less index space per record
(can keep more of index in memory)

  Sparse allows multi-level indexes
  Dense can tell if record exists without

accessing it
  Dense needed for secondary indexes
  Primary index = order of records in storage
  Secondary index = impose different order

19

Secondary Index

20

Sequential File

40
20

20
10

30
50

50
10

20
60

Secondary Index

10
10
20
20

20
30
40
50

50
60

2nd level

10
20
50

Careful when
Looking for 20

Secondary Index

21

Sequential File

40
20

20
10

30
50

50
10

20
60

Secondary Index

10
20
30
40

50
60

2nd level

10
50

Combining Indexes

  Just intersect buckets in memory!
22

Beer index Sells Price index

OC 20

  SELECT * FROM Sells WHERE beer =
“Od.Cl.“ AND price = “20“

C.Ch.

Conventional Indexes

  Sparse, Dense, Multi-level, ...
  Advantages:

  Simple
  Sequential index is good for scans

  Disadvantage:
  Inserts expensive
  Lose sequentiality and balance

23

Example: Unbalanced Index

24

10
20
30

40
50
60

70
80
90

33

39
31
35
36

32
38
34

overflow area
(not sequential)

B+Trees

25

Idea

  Conventional indexes are fixed-level
  Give up sequentiality of the index in

favour of balance
  B+Tree = variant of B-Tree
  Allows index tree to grow as needed
  Ensures that all blocks are between half

used and completely full

26

Characteristics

  Parameter n determines number of keys
and pointers per node

  Key size 4 and pointer size 8 allows for
maximal n = 340 (4n + 8(n+1) < 4096)

  Leafs contain at least n/2 key-pointer pairs
to records and a pointer to the next leaf

  Interior nodes contain at least (n-1)/2 keys
and at least n/2 pointers to other nodes

  No restrictions for the root node
27

Example: B+Tree (n=3)

28

3 6 9 23 31 37 11 15 17 64 85 42 57

64 11 23

42

Example: Leaf node

29

42 57

To record
With key 42

To record
With key 57

To next leaf

Example: Interior node

30

To keys
K < 11

To keys
11 ≤ K < 23

11 23

To keys
23 ≤ K

Restrictions

31

 Full node min. node

Non-leaf

Leaf

11 23 42 64

11 15 17 64 85

Counts even
when null

Insertion

  If there is place in the appropriate leaf,
just insert it there

  Otherwise:
  Split the leaf in two and divide the keys
  Insert the smallest value reachable through

the right node into the parent node
  Recurse until there is enough room

  Special case: Splitting the root results in
a new root

32

Example: Insertion

  Insert 85

33

3 6 9 11 17 23 31 37 42 57

11 23 42

42 57 85

Example: Insertion

  Insert 15

34

3 6 9 11 17 23 31 37

11 23 42

42 57 85 11 15 17

Example: Insertion

  Insert 64

35

3 6 9 23 31 37

11 23 42

42 57 85 11 15 17 64 85 42 57

64 11 23

42

42

Deletion

  If there are enought keys left in the
appropriate leaf, just delete the key

  Otherwise:
  If there is a direct sibling with more than

minimum key, steal one!
  If not, join the node with a direct sibling and

delete the smallest value reachable through
the former right sibling from its parent

  Special case: If the root contains only
one pointer after deletion, delete it 36

Example: Deletion

  Delete 9

37

3 6 9 23 31 37 11 15 17 64 85 42 57

64 11 23

42

3 6 9 3 6

Example: Deletion

  Delete 3

38

3 6 23 31 37 11 15 17 64 85 42 57

64 11 23

42

3 6 6 6 11 15 17

15 23

Example: Deletion

  Delete 11

39

6 11 23 31 37 15 17 64 85 42 57

64 15 23

42

6 11 6 6 15 17

23

Example: Deletion

  Delete 17, 37

40

23 31 37 64 85 42 57

64

42

6 15 17

23

6 15 23 31

Example: Deletion

  Delete 31

41

64 85 42 57

64

42

23

6 15 23 31 23 6 15 23 6 15 23

42 64

Efficiency

  Need to load one block for each level!
  With n = 340 and an average fill of 255

pointers, we can index 255^3 = 16.6
million records in only 3 levels

  There are at most 342 blocks in the first
two levels

  First two levels can be kept in memory
using less than 1.4 Mbyte

  Only need to access one block!
42

Range Queries

  Queries often restrict an attribute to a
range of values

  Example:
 SELECT * FROM Sells
 WHERE beer > 20;

  Records are found efficiently by searching
for value 20 and then traversing the leafs

  Can also be used if there is both an upper
and a lower limit

43

Summary 10

More things you should know:
  Dense Index, Sparse Index
  Multi-Level Indexes
  Primary vs Secondary Index
  Structure of B+Trees
  Insertion and Deletion in B+Trees

44

