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Record 

§  Collection of related data items (called 
Fields) 

§  Typically used to store one tuple 
§  Example: Sells record consisting of 

§  bar field 
§  beer field 
§  price field 
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Record Metadata 

§  For fixed-length records, schema 
contains the following information: 
§  Number of fields 
§  Type of each field 
§ Order in record 

§  For variable-length records, every 
record contains this information in its 
header 
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Record Header 

§  Reserved part at the beginning of a 
record 

§  Typically contains: 
§  Record type (which Schema?) 
§  Record length (for skipping) 
§  Time stamp (last access) 
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Files 

§  Files consist of blocks containing records 
§  How to place records into blocks? 
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assume fixed 
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Files 

§  Options for storing records in blocks: 
1.  Separating records 
2.  Spanned vs. unspanned 
3.  Sequencing 
4.  Indirection 
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1. Separating Records 

Block 
 
a. no need to separate - fixed size recs. 
b. special marker 
c. give record lengths (or offsets) 

i.  within each record 
ii.  in block header 
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2. Spanned vs Unspanned 

§  Unspanned: records must be in one block 
 

§  Spanned: one record in two or more blocks 

§  Unspanned much simpler, but wastes space 
§  Spanned essential if record size > block size 
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3. Sequencing 

§  Ordering records in a file (and in the blocks) 
by some key value 

§  Can be used for binary search 
§  Options: 

a.  Next record is physically contiguous 
 
b.  Records are linked 
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4. Indirection 
§  How does one refer to records? 

a.  Physical address (disk id, cylinder, head, 
sector, offset in block) 

b.  Logical record ids and a mapping table 

 
 
 
 
§  Tradeoff between flexibility and cost 
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Physical 
addr. Rec ID 

Indirection map 
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Modification of Records 

How to handle the following operations 
on the record level? 
1.  Insertion 
2.  Deletion 
3.  Update 
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1. Insertion 

§  Easy case: records not in sequence 
§  Insert new record at end of file 
§  If records are fixed-length, insert new 

record in deleted slot 

§  Difficult case: records are sorted 
§  Find position and slide following records 
§  If records are sequenced by linking, insert 

overflow blocks 
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2. Deletion 

a.  Immediately reclaim space by shifting 
other records or removing overflows 

b.  Mark deleted and list as free for re-use 
§  Tradeoffs: 

§  How expensive is immediate reclaim? 
§  How much space is wasted? 
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Problem with Deletion 
§  Dangling pointers: 

§  When using physical addresses: 

§  When using logical addresses: 
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3. Update 

§  If records are fixed-length and the 
order is not affected: 
§  Fetch the record, modify it, write it back 

§  Otherwise: 
§  Delete the old record 
§  Insert the new record overwriting the 

tombstones from the deletion 
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Pointer Swizzling 

§  Swizzling = replacement of physical 
addresses by memory addresses when 
loading blocks into memory 

§  Automatic Swizzling: swizzle all 
addresses when loading a block     
(need to swizzle all pointer from and to 
the block) 

§  Swizzling on Demand: use addresses 
which are invalid as memory addresses   
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Data Organizaton 

§  There are millions of ways to organize 
the data on disk 

§  Flexibility                  Space Utilization 

  Complexity                Performance 
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Summary 9 

More things you should know: 
§  Memory Hierarchy 
§  Storage on harddisks 
§  Values, Records, Blocks, Files 
§  Storing and modifying records 
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Index Structures 
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Finding Records 

§  How do we find the records for a query? 
§  Example: SELECT * FROM Sells 
§  Need to examine every block in every file 
§  Group blocks into files by relation! 
§  Example: SELECT * FROM Sells  

 WHERE price = 20; 
§  Need to examine every block in the file 
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Finding Records 

§  Use of indexes allows to narrow search 
to (almost) only the relevant blocks 
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§  Indexes can be dense or sparse 



Dense Index 
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Sparse Index 
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40 
30 

§  Delete 40 

Deletion from Sparse Index 
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§  Delete 30 

Deletion from Sparse Index 
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§  Delete 30 & 40 

Deletion from Sparse Index 
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§  Insert 35 

Insertion into Sparse Index 
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§  Insert 25 

Insertion into Sparse Index 
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Sparse vs Dense 

§  Sparse uses less index space per record 
(can keep more of index in memory) 

§  Sparse allows multi-level indexes 
§  Dense can tell if record exists without 

accessing it 
§  Dense needed for secondary indexes 
§  Primary index = order of records in storage 
§  Secondary index = impose different order 
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Secondary Index 
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Secondary Index 
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Combining Indexes 

§  Just intersect buckets in memory! 
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Beer index    Sells     Price index 

OC     20 

§  SELECT * FROM Sells WHERE beer = 
“Od.Cl.“ AND price = “20“ 

C.Ch. 



Conventional Indexes 

§  Sparse, Dense, Multi-level, ... 
§  Advantages: 

§  Simple 
§  Sequential index is good for scans 

§  Disadvantage: 
§  Inserts expensive 
§  Lose sequentiality and balance 

33 



Example: Unbalanced Index 
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B+Trees 
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Idea 

§  Conventional indexes are fixed-level 
§  Give up sequentiality of the index in 

favour of balance 
§  B+Tree = variant of B-Tree 
§  Allows index tree to grow as needed 
§  Ensures that all blocks are between half 

used and completely full 
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Characteristics 

§  Parameter n determines number of keys 
and pointers per node 

§  Key size 4 and pointer size 8 allows for 
maximal n = 340   (4n + 8(n+1) < 4096) 

§  Leafs contain at least n/2 key-pointer pairs 
to records and a pointer to the next leaf 

§  Interior nodes contain at least (n-1)/2 keys 
and at least n/2 pointers to other nodes 

§  No restrictions for the root node 
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Example: B+Tree (n=3) 
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3 6 9 23 31 37 11 15 17 64 85 42 57 

64 11 23 
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Example: Leaf node 

39 

42 57 

To record 
With key 42 

To record 
With key 57 

To next leaf 



Example: Interior node 
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To keys 
K < 11 
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11 23 
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Restrictions 
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         Full node       min. 
node 

 
Non-leaf 
 
 
Leaf 

11 23 42 64 

11 15 17 64 85 

Counts even 
when null 



Insertion 

§  If there is place in the appropriate leaf, 
just insert it there 

§  Otherwise: 
§  Split the leaf in two and divide the keys 
§  Insert the smallest value reachable through 

the right node into the parent node 
§  Recurse until there is enough room 

§  Special case: Splitting the root results in 
a new root 
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Example: Insertion 

§  Insert 85 
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3 6 9 11 17 23 31 37 42 57 
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Example: Insertion 

§  Insert 15 
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Example: Insertion 

§  Insert 64 

45 

3 6 9 23 31 37 

11 23 42 

42 57 85 11 15 17 64 85 42 57 

64 11 23 

42 

42 



Deletion 

§  If there are enough keys left in the 
appropriate leaf, just delete the key 

§  Otherwise: 
§  If there is a direct sibling with more than 

minimum key, steal one! 
§  If not, join the node with a direct sibling and 

delete the smallest value reachable through 
the former right sibling from its parent 

§  Special case: If the root contains only 
one pointer after deletion, delete it 46 



Example: Deletion 

§  Delete 9 
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Example: Deletion 

§  Delete 3 
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Example: Deletion 

§  Delete 11 
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Example: Deletion 

§  Delete 17, 37 
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Example: Deletion 

§  Delete 31 

51 

64 85 42 57 

64 

42 

23 

6 15 23 31 23 6 15 23 6 15 23 

42 64 



Efficiency 

§  Need to load one block for each level! 
§  With n = 340 and an average fill of 255 

pointers, we can index 255^3 = 16.6 
million records in only 3 levels 

§  There are at most 342 blocks in the first 
two levels 

§  First two levels can be kept in memory 
using less than 1.4 Mbyte 

§  Only need to access one block! 
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Range Queries 

§  Queries often restrict an attribute to a 
range of values 

§  Example:      
 SELECT * FROM Sells   
 WHERE price > 20; 

§  Records are found efficiently by searching 
for value 20 and then traversing the leafs 

§  Can also be used if there is both an upper 
and a lower limit 
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Summary 10 

More things you should know: 
§  Dense Index, Sparse Index 
§  Multi-Level Indexes 
§  Primary vs Secondary Index 
§  Structure of B+Trees 
§  Insertion and Deletion in B+Trees 

54 



Hash Tables 
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Hash Table in Primary Storage 

§  Main parameter B = number of buckets 
§  Hash function h maps key to numbers 

from 0 to B-1 
§  Bucket array indexed from 0 to B-1 
§  Each bucket contains exactly one value 
§  Strategy for handling conflicts 
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Example: B = 4 

§  Insert c (h(c) = 3) 
§  Insert a (h(a) = 1) 
§  Insert e (h(e) = 1) 
§  Alternative 1: 

§  Search for free bucket,      
e.g. by Linear Probing 

§  Alternative 2: 
§  Add overflow bucket 
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Hash Function 

§  Hash function should ensure hash values 
are equally distributed 

§  For integer key K, take h(K) = K modulo B 
§  For string key, add up the numeric values 

of the characters and compute the 
remainder modulo B  

§  For really good hash functions, see Donald 
Knuth, The Art of Computer Programming: 
Volume 3 – Sorting and Searching 
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Hash Table in Secondary Storage 

§  Each bucket is a block containing f   
key-pointer pairs 

§  Conflict resolution by probing potentially 
leads to a large number of I/Os 

§  Thus, conflict resolution by adding 
overflow buckets 

§  Need to ensure we can directly access 
bucket i  given number i 
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Example: Insertion, B=4, f=2 

§  Insert a 
§  Insert b 
§  Insert c 
§  Insert d 
§  Insert e 
§  Insert g 
§  Insert i 
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Efficiency 

§  Very efficient if buckets use only one 
block: one I/O per lookup 

§  Space utilization is #keys in hash 
divided by total #keys that fit 

§  Try to keep between 50% and 80%: 
§ < 50% wastes space 
§ > 80% significant number of overflows 
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Dynamic Hashing 

§  How to grow and shrink hash tables? 
§  Alternative 1: 

§  Use overflows and reorganizations 

§  Alternative 2: 
§  Use dynamic hashing 
§  Extensible Hash Tables 
§  Linear Hash Tables 
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Extensible Hash Tables 

§  Hash function computes sequence of k 
bits for each key 
  k = 8 

 
§  At any time, use only the first i  bits 
§  Introduce indirection by a pointer array 
§  Pointer array grows and shrinks (size 2i ) 
§  Pointers may share data blocks (store 

number of bits used for block in j ) 63 

00110101 
i = 3 



Example: k = 4, f = 2 
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Insertion 

§  Find destination block B for key-pointer pair 
§  If there is room, just insert it 
§  Otherwise, let j denote the number of bits 

used for block B 
§  If j = i, increment i by 1: 

§  Double the length of the bucket array to 2i+1 

§  Adjust pointers such that for old bit strings w, 
w0 and w1 point to the same bucket 

§  Retry insertion 
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Insertion 

§  If j < i, add a new block B‘: 
§  Key-pointer pairs with (j+1)st bit = 0 stay in B 
§  Key-pointer pairs with (j+1)st bit = 1 go to B‘ 
§  Set number of bits used to j+1 for B and B‘ 
§  Adjust pointers in bucket array such that if for 

all w where previously w0 and w1 pointed to B, 
now w1 points to B‘ 

§  Retry insertion 

66 



Example: Insert, k = 4, f = 2 

§  Insert 1010 
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Example: Insert, k = 4, f = 2 

§  Insert 0111 
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Example: Insert, k = 4, f = 2 

§  Insert 0000 
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Deletion 

§  Find destination block B for key-pointer pair 
§  Delete the key-pointer pair 
§  If two blocks B referenced by w0 and w1  

contain at most f keys, merge them, 
decrease their j by 1, and adjust pointers 

§  If there is no block with j = i,  reduce the 
pointer array to size 2i-1 and decrease i by 1 
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Example: Delete, k = 4, f = 2 

§  Delete 0000 
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Example: Delete, k = 4, f = 2 

§  Delete 0111 
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Example: Delete, k = 4, f = 2 

§  Delete 1010 
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Efficiency 

§  As long as pointer array fits into 
memory and hash function behaves 
nicely, just need one I/O per lookup 

§  Overflows can still happen if many key-
pointer pairs hash to the same bit string 

§  Solve by adding overflow blocks 
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