
DBMS Storage Overview

1

Values

Records

Blocks

Files

Memory

Record

§  Collection of related data items (called
Fields)

§  Typically used to store one tuple
§  Example: Sells record consisting of

§  bar field
§  beer field
§  price field

2

Record Metadata

§  For fixed-length records, schema
contains the following information:
§  Number of fields
§  Type of each field
§ Order in record

§  For variable-length records, every
record contains this information in its
header

3

Record Header

§  Reserved part at the beginning of a
record

§  Typically contains:
§  Record type (which Schema?)
§  Record length (for skipping)
§  Time stamp (last access)

4

Files

§  Files consist of blocks containing records
§  How to place records into blocks?

5

assume fixed
length blocks

assume a single file

Files

§  Options for storing records in blocks:
1.  Separating records
2.  Spanned vs. unspanned
3.  Sequencing
4.  Indirection

6

1. Separating Records

Block

a. no need to separate - fixed size recs.
b. special marker
c. give record lengths (or offsets)

i.  within each record
ii.  in block header

7

R2 R1 R3

2. Spanned vs Unspanned

§  Unspanned: records must be in one block

§  Spanned: one record in two or more blocks

§  Unspanned much simpler, but wastes space
§  Spanned essential if record size > block size

8

R1 R2 R3 R4 R5

R1 R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

3. Sequencing

§  Ordering records in a file (and in the blocks)
by some key value

§  Can be used for binary search
§  Options:

a.  Next record is physically contiguous

b.  Records are linked

9

Next (R1) R1 ...

R1 Next (R1)

4. Indirection
§  How does one refer to records?

a.  Physical address (disk id, cylinder, head,
sector, offset in block)

b.  Logical record ids and a mapping table

§  Tradeoff between flexibility and cost

10

Physical
addr. Rec ID

Indirection map

17 2:34:5:742:2340

Modification of Records

How to handle the following operations
on the record level?
1.  Insertion
2.  Deletion
3.  Update

11

1. Insertion

§  Easy case: records not in sequence
§  Insert new record at end of file
§  If records are fixed-length, insert new

record in deleted slot

§  Difficult case: records are sorted
§  Find position and slide following records
§  If records are sequenced by linking, insert

overflow blocks

12

2. Deletion

a.  Immediately reclaim space by shifting
other records or removing overflows

b.  Mark deleted and list as free for re-use
§  Tradeoffs:

§  How expensive is immediate reclaim?
§  How much space is wasted?

13

Problem with Deletion
§  Dangling pointers:

§  When using physical addresses:

§  When using logical addresses:

14

R1 ?

Never reused May be reused

ID LOC

7788

Never reuse
ID 7788 nor
space in the map

3. Update

§  If records are fixed-length and the
order is not affected:
§  Fetch the record, modify it, write it back

§  Otherwise:
§  Delete the old record
§  Insert the new record overwriting the

tombstones from the deletion

15

Pointer Swizzling

§  Swizzling = replacement of physical
addresses by memory addresses when
loading blocks into memory

§  Automatic Swizzling: swizzle all
addresses when loading a block
(need to swizzle all pointer from and to
the block)

§  Swizzling on Demand: use addresses
which are invalid as memory addresses

16

Data Organizaton

§  There are millions of ways to organize
the data on disk

§  Flexibility Space Utilization

 Complexity Performance

17

Summary 9

More things you should know:
§  Memory Hierarchy
§  Storage on harddisks
§  Values, Records, Blocks, Files
§  Storing and modifying records

18

Index Structures

19

Finding Records

§  How do we find the records for a query?
§  Example: SELECT * FROM Sells
§  Need to examine every block in every file
§  Group blocks into files by relation!
§  Example: SELECT * FROM Sells

 WHERE price = 20;
§  Need to examine every block in the file

20

Finding Records

§  Use of indexes allows to narrow search
to (almost) only the relevant blocks

21

Index
Blocks
Holding
records

Value Matching records

§  Indexes can be dense or sparse

Dense Index

22

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40

50
60
70
80

90
100
110
120

Sparse Index

23

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70

90
110
130
150

170
190
210
230

2nd level

10
90
170
250

330
410
490
570

40
30

§  Delete 40

Deletion from Sparse Index

24

20
10

60
50

80
70

10
30
50
70

90 	

	

110
130
150

40
30 30

§  Delete 30

Deletion from Sparse Index

25

20
10

60
50

80
70

10
30
50
70

90 	

	

110
130
150

40
30
40
30
40
40

10
40
50
70

90 	

	

110
130
150

§  Delete 30 & 40

Deletion from Sparse Index

26

20
10

60
50

80
70

10
30
50
70

90 	

	

110
130
150

40
30
40
30

10
50
70

90 	

	

110
130
150

§  Insert 35

Insertion into Sparse Index

27

20
10

60
50

80
70

10
30
50
70

90 	

	

110
130
150

30
35
30

§  Insert 25

Insertion into Sparse Index

28

20
10

60
50

80
70

10
30
50
70

90 	

	

110
130
150

35
30

25

Sparse vs Dense

§  Sparse uses less index space per record
(can keep more of index in memory)

§  Sparse allows multi-level indexes
§  Dense can tell if record exists without

accessing it
§  Dense needed for secondary indexes
§  Primary index = order of records in storage
§  Secondary index = impose different order

29

Secondary Index

30

Sequential File

40
20

20
10

30
50

50
10

20
60

Secondary Index

10
10
20
20

20
30
40
50

50
60

2nd level

10
20
50

Careful when
Looking for 20

Secondary Index

31

Sequential File

40
20

20
10

30
50

50
10

20
60

Secondary Index

10
20
30
40

50
60

2nd level

10
50

Combining Indexes

§  Just intersect buckets in memory!
32

Beer index Sells Price index

OC 20

§  SELECT * FROM Sells WHERE beer =
“Od.Cl.“ AND price = “20“

C.Ch.

Conventional Indexes

§  Sparse, Dense, Multi-level, ...
§  Advantages:

§  Simple
§  Sequential index is good for scans

§  Disadvantage:
§  Inserts expensive
§  Lose sequentiality and balance

33

Example: Unbalanced Index

34

10
20
30

40
50
60

70
80
90

33

39
31
35
36

32
38
34

overflow area
(not sequential)

B+Trees

35

Idea

§  Conventional indexes are fixed-level
§  Give up sequentiality of the index in

favour of balance
§  B+Tree = variant of B-Tree
§  Allows index tree to grow as needed
§  Ensures that all blocks are between half

used and completely full

36

Characteristics

§  Parameter n determines number of keys
and pointers per node

§  Key size 4 and pointer size 8 allows for
maximal n = 340 (4n + 8(n+1) < 4096)

§  Leafs contain at least n/2 key-pointer pairs
to records and a pointer to the next leaf

§  Interior nodes contain at least (n-1)/2 keys
and at least n/2 pointers to other nodes

§  No restrictions for the root node
37

Example: B+Tree (n=3)

38

3 6 9 23 31 37 11 15 17 64 85 42 57

64 11 23

42

Example: Leaf node

39

42 57

To record
With key 42

To record
With key 57

To next leaf

Example: Interior node

40

To keys
K < 11

To keys
11 ≤ K < 23

11 23

To keys
23 ≤ K

Restrictions

41

 Full node min.
node

Non-leaf

Leaf

11 23 42 64

11 15 17 64 85

Counts even
when null

Insertion

§  If there is place in the appropriate leaf,
just insert it there

§  Otherwise:
§  Split the leaf in two and divide the keys
§  Insert the smallest value reachable through

the right node into the parent node
§  Recurse until there is enough room

§  Special case: Splitting the root results in
a new root

42

Example: Insertion

§  Insert 85

43

3 6 9 11 17 23 31 37 42 57

11 23 42

42 57 85

Example: Insertion

§  Insert 15

44

3 6 9 11 17 23 31 37

11 23 42

42 57 85 11 15 17

Example: Insertion

§  Insert 64

45

3 6 9 23 31 37

11 23 42

42 57 85 11 15 17 64 85 42 57

64 11 23

42

42

Deletion

§  If there are enough keys left in the
appropriate leaf, just delete the key

§  Otherwise:
§  If there is a direct sibling with more than

minimum key, steal one!
§  If not, join the node with a direct sibling and

delete the smallest value reachable through
the former right sibling from its parent

§  Special case: If the root contains only
one pointer after deletion, delete it 46

Example: Deletion

§  Delete 9

47

3 6 9 23 31 37 11 15 17 64 85 42 57

64 11 23

42

3 6 9 3 6

Example: Deletion

§  Delete 3

48

3 6 23 31 37 11 15 17 64 85 42 57

64 11 23

42

3 6 6 6 11 15 17

15 23

Example: Deletion

§  Delete 11

49

6 11 23 31 37 15 17 64 85 42 57

64 15 23

42

6 11 6 6 15 17

23

Example: Deletion

§  Delete 17, 37

50

23 31 37 64 85 42 57

64

42

6 15 17

23

6 15 23 31

Example: Deletion

§  Delete 31

51

64 85 42 57

64

42

23

6 15 23 31 23 6 15 23 6 15 23

42 64

Efficiency

§  Need to load one block for each level!
§  With n = 340 and an average fill of 255

pointers, we can index 255^3 = 16.6
million records in only 3 levels

§  There are at most 342 blocks in the first
two levels

§  First two levels can be kept in memory
using less than 1.4 Mbyte

§  Only need to access one block!
52

Range Queries

§  Queries often restrict an attribute to a
range of values

§  Example:
 SELECT * FROM Sells
 WHERE price > 20;

§  Records are found efficiently by searching
for value 20 and then traversing the leafs

§  Can also be used if there is both an upper
and a lower limit

53

Summary 10

More things you should know:
§  Dense Index, Sparse Index
§  Multi-Level Indexes
§  Primary vs Secondary Index
§  Structure of B+Trees
§  Insertion and Deletion in B+Trees

54

Hash Tables

55

Hash Table in Primary Storage

§  Main parameter B = number of buckets
§  Hash function h maps key to numbers

from 0 to B-1
§  Bucket array indexed from 0 to B-1
§  Each bucket contains exactly one value
§  Strategy for handling conflicts

56

Example: B = 4

§  Insert c (h(c) = 3)
§  Insert a (h(a) = 1)
§  Insert e (h(e) = 1)
§  Alternative 1:

§  Search for free bucket,
e.g. by Linear Probing

§  Alternative 2:
§  Add overflow bucket

57

. . .

0

1

2

3

Conflict!

a

c

e

e

Hash Function

§  Hash function should ensure hash values
are equally distributed

§  For integer key K, take h(K) = K modulo B
§  For string key, add up the numeric values

of the characters and compute the
remainder modulo B

§  For really good hash functions, see Donald
Knuth, The Art of Computer Programming:
Volume 3 – Sorting and Searching

58

Hash Table in Secondary Storage

§  Each bucket is a block containing f
key-pointer pairs

§  Conflict resolution by probing potentially
leads to a large number of I/Os

§  Thus, conflict resolution by adding
overflow buckets

§  Need to ensure we can directly access
bucket i given number i

59

Example: Insertion, B=4, f=2

§  Insert a
§  Insert b
§  Insert c
§  Insert d
§  Insert e
§  Insert g
§  Insert i

60

0

1

2

3

a

1

b

2

c

3

d

0

a
e

1

c
g

3

i

Efficiency

§  Very efficient if buckets use only one
block: one I/O per lookup

§  Space utilization is #keys in hash
divided by total #keys that fit

§  Try to keep between 50% and 80%:
§ < 50% wastes space
§ > 80% significant number of overflows

61

Dynamic Hashing

§  How to grow and shrink hash tables?
§  Alternative 1:

§  Use overflows and reorganizations

§  Alternative 2:
§  Use dynamic hashing
§  Extensible Hash Tables
§  Linear Hash Tables

62

Extensible Hash Tables

§  Hash function computes sequence of k
bits for each key
 k = 8

§  At any time, use only the first i bits
§  Introduce indirection by a pointer array
§  Pointer array grows and shrinks (size 2i)
§  Pointers may share data blocks (store

number of bits used for block in j) 63

00110101
i = 3

Example: k = 4, f = 2

64

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

Insertion

§  Find destination block B for key-pointer pair
§  If there is room, just insert it
§  Otherwise, let j denote the number of bits

used for block B
§  If j = i, increment i by 1:

§  Double the length of the bucket array to 2i+1

§  Adjust pointers such that for old bit strings w,
w0 and w1 point to the same bucket

§  Retry insertion

65

Insertion

§  If j < i, add a new block B‘:
§  Key-pointer pairs with (j+1)st bit = 0 stay in B
§  Key-pointer pairs with (j+1)st bit = 1 go to B‘
§  Set number of bits used to j+1 for B and B‘
§  Adjust pointers in bucket array such that if for

all w where previously w0 and w1 pointed to B,
now w1 points to B‘

§  Retry insertion

66

Example: Insert, k = 4, f = 2

§  Insert 1010

67

0001

1

1001
1100

1

0

1

i = 1

00

01

10

11

i = 2

1100

1 1100

2

1001

1 1001

2 1001
1010

2

Example: Insert, k = 4, f = 2

§  Insert 0111

68

0001

1 i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

Example: Insert, k = 4, f = 2

§  Insert 0000

69

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1

0111

1

0001

1 0001

2

0111

2

0001
0000

2

Deletion

§  Find destination block B for key-pointer pair
§  Delete the key-pointer pair
§  If two blocks B referenced by w0 and w1

contain at most f keys, merge them,
decrease their j by 1, and adjust pointers

§  If there is no block with j = i, reduce the
pointer array to size 2i-1 and decrease i by 1

70

Example: Delete, k = 4, f = 2

§  Delete 0000

71

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0000

2

0111

2

0001

2 0001
0111

2 0001
0111

1

Example: Delete, k = 4, f = 2

§  Delete 0111

72

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001
0111

1 0001

1

Example: Delete, k = 4, f = 2

§  Delete 1010

73

i = 1

00

01

10

11

i = 2

1100

2

1001
1010

2

0001

1

1001

2 1001
1100

2 1001
1100

1

Efficiency

§  As long as pointer array fits into
memory and hash function behaves
nicely, just need one I/O per lookup

§  Overflows can still happen if many key-
pointer pairs hash to the same bit string

§  Solve by adding overflow blocks

74

