
DM 509 Programming Languages

Fall 2011 Project (Part 1)

Department of Mathematics and Computer Science
University of Southern Denmark

November 22, 2011

2

Introduction

The purpose of the project for DM509 is to try in practice the use of logic
and functional programming for small but non-trivial examples. The project
consists of two parts. The first deals with logic programming and the second
part with functional programming.

Please make sure to read this entire note before starting your work on
this part of the project. Pay close attention to the sections on deadlines,
deliverables, and exam rules.

Exam Rules

This first part of the project is a part of the final exam. Both parts of the
project have to be passed to pass the course.

Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Deliverables

There is one deliverable for this first part of the project: A short project
report in PDF format (2-5 pages without front page and appendix) has to
be delivered. This report should contain the following 7 sections:

• front page

• specification

• design

• implementation

• testing

• conclusion

• appendix including all source code

The report has to be delivered in TWO copies:

• 1 electronic copy using Blackboard’s Assignment Hand-In functionality

• 1 paper copy (to the teacher’s mailbox at the IMADA secretariat)

Deadline

Monday, December 12, 12:00

3

The Problem

Your task in this part of the project is to write a solver for Sudoku puzzles.
Sudoku puzzles are a kind of crossword puzzles with numbers where the
following two conditions have to be met:

• In each row or column, the nine numbers have to be from the set
{1, 2, 3, 4, 5, 6, 7, 8, 9} and they must all be different.

• For each of the nine non-overlapping 3x3 blocks, the nine numbers have
to be from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} and they must all be different.

The following two figures show a Sudoku puzzle and its solution.

The Input

For input to your program, the Sudoku puzzles are represented as Prolog
terms. More specifically, they are represented as matrices (lists of rows which
are lists of fields) where the fields can be one of the following two types:

• A term x signifies an empty cell, i.e., a cell that your solver needs to
find a number for.

• A numeric term signifies a cell whose value is fixed, i.e., the correspond-
ing cell needs to have this number in the solution that you find.

4

Thus, for our example above we obtain the following Prolog term:

[[x, x, 8, 1, x, x, 5, x, x],

[9, 6, x, x, 8, x, x, x, x],

[x, 5, x, x, 3, 6, x, 9, 8],

[x, x, 7, x, 6, 9, x, 1, 2],

[x, x, 6, 8, x, 7, 3, x, x],

[8, 1, x, 4, 5, x, 6, x, x],

[4, 2, x, 6, 7, x, x, 8, x],

[x, x, x, x, 4, x, x, 6, 3],

[x, x, 5, x, x, 8, 7, x, x]]

The home page of the course contains a number of possible inputs to test
your program on.

The Output

The output of your solver should also be a Prolog term. The representation
is similar to the one for the Input except for all x being replaced by the
appropriate number.

Thus, for our example above we obtain the following Prolog term:

[[3, 7, 8, 1, 9, 4, 5, 2, 6],

[9, 6, 4, 2, 8, 5, 1, 3, 7],

[1, 5, 2, 7, 3, 6, 4, 9, 8],

[5, 4, 7, 3, 6, 9, 8, 1, 2],

[2, 9, 6, 8, 1, 7, 3, 5, 4],

[8, 1, 3, 4, 5, 2, 6, 7, 9],

[4, 2, 1, 6, 7, 3, 9, 8, 5],

[7, 8, 9, 5, 4, 1, 2, 6, 3],

[6, 3, 5, 9, 2, 8, 7, 4, 1]]

The Task

Implement a predicate solve/2 that takes an unsolved Sudoku puzzle as the
first argument and instantiates the second argument by its solved form.

Keep in mind, that there are many different ways how to implement such
a solve/2 predicate. Explain your approach in the design section of your
report. Then implement and test it.

You could for example choose one of the following approaches:

• Use a generate-and-test approach, i.e., enumerate solution candidates
and test them until you find a solution.

5

• Generate constraints from the input and use constraint programming
to solve them.

• Implement solving rules as used by human players and use brute-force
only as a last resort.

The Foundations

There is a number of built-in predicates that you might find useful when
building a Sudoku solver:

• var/1, which is true if the argument is an (uninstantiated) variable

• fd var/1, which is true if the argument is an (uninstantiated) con-
straint variable

• number/1, which is true if the argument is an integer or a floating point
number

• read/1, write/1, and nl/0 for input and output

• fd domain/3, fd all different/1, fd labeling/1, and #= for con-
straint solving

To make life easier for you, I have also defined some predicates for outputting
Sudoku puzzles (show/1, works both on puzzles in input and in output form).

Finally, there is a template available from the course home page for calling
your solve/2 predicate (see next section) using the predicate sudoku/0.

Example Output

The printed output when posing the query ?- sudoku. and inputting the
input from above could be:

Please enter puzzle as matrix:

[[x, x, 8, 1, x, x, 5, x, x],

[9, 6, x, x, 8, x, x, x, x],

[x, 5, x, x, 3, 6, x, 9, 8],

[x, x, 7, x, 6, 9, x, 1, 2],

[x, x, 6, 8, x, 7, 3, x, x],

[8, 1, x, 4, 5, x, 6, x, x],

[4, 2, x, 6, 7, x, x, 8, x],

[x, x, x, x, 4, x, x, 6, 3],

[x, x, 5, x, x, 8, 7, x, x]]

6

+-------+-------+-------+

| x x 8 | 1 x x | 5 x x |

| 9 6 x | x 8 x | x x x |

| x 5 x | x 3 6 | x 9 8 |

+-------+-------+-------+

| x x 7 | x 6 9 | x 1 2 |

| x x 6 | 8 x 7 | 3 x x |

| 8 1 x | 4 5 x | 6 x x |

+-------+-------+-------+

| 4 2 x | 6 7 x | x 8 x |

| x x x | x 4 x | x 6 3 |

| x x 5 | x x 8 | 7 x x |

+-------+-------+-------+

Setting up constraints ... DONE

Solving constraints ... DONE

+-------+-------+-------+

| 3 7 8 | 1 9 4 | 5 2 6 |

| 9 6 4 | 2 8 5 | 1 3 7 |

| 1 5 2 | 7 3 6 | 4 9 8 |

+-------+-------+-------+

| 5 4 7 | 3 6 9 | 8 1 2 |

| 2 9 6 | 8 1 7 | 3 5 4 |

| 8 1 3 | 4 5 2 | 6 7 9 |

+-------+-------+-------+

| 4 2 1 | 6 7 3 | 9 8 5 |

| 7 8 9 | 5 4 1 | 2 6 3 |

| 6 3 5 | 9 2 8 | 7 4 1 |

+-------+-------+-------+

yes

