
DM519 Concurrent Programming

Lecture 1: Introduction, Processes & Threads

Teacher
Peter Schneider-Kamp 

<petersk@imada.sdu.dk>

Teaching Assistants
Nikolai Nøjgaard 

<nnoej10@student.sdu.dk>
Abyayananda Maiti 

<abyaym@imada.sdu.dk>

Textbook
[M&K] Concurrency: State Models & 

Java Programs (2nd edition). Jeff 
Magee & Jeff Kramer. Wiley. 2006, 
ISBN: 0-470-09355-2

Course Home Page
http://imada.sdu.dk/~petersk/DM519/

1
1

mailto:petersk@imada.sdu.dk
mailto:petersk@imada.sdu.dk
mailto:nnoej10@student.sdu.dk
mailto:nnoej10@student.sdu.dk
mailto:abyaym@imada.sdu.dk
mailto:abyaym@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM519/
http://imada.sdu.dk/~petersk/DM519/


DM519 Concurrent Programming

What is a Concurrent Program?

2
2



DM519 Concurrent Programming

What is a Concurrent Program?

A sequential program has a single thread 
of control.

2
2



DM519 Concurrent Programming

What is a Concurrent Program?

A sequential program has a single thread 
of control.

A concurrent program has multiple 
threads of control:

– perform multiple computations in parallel
– control multiple external activities 

occurring simultaneously.
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Why Concurrent Programming?

More appropriate program structure
– Concurrency reflected in program 

Performance gain from multiprocessing HW
– Parallelism

Increased application throughput 
– An I/O call need only block one thread

Increased application responsiveness 
– High-priority thread for user requests
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Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)
– Programs are harder to debug(!) (Heisenbugs)
– Errors are not always reproducible(!)
– New kinds of errors possible(!):

• Deadlock, starvation, priority inversion, interference, …
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Solution: Model-based Design

Model: a simplified representation 
of the real world.

–  focus on concurrency aspects

Design abstract model

Decompose model

Reason/Test/Verify model
– individual parts and whole

Recompose insights
– make model safe

Implement concrete program

concretize

REAL PROBLEM

SAFE MODEL

SAFE PROGRAM

abstract

? ?
?

?

MODEL

test
reason

verify

5
5
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What you will be able to do after the course

Construct models from specifications of concurrency 
problems  

Test, analyze, and compare models’ behavior

Define and verify models’ safety/liveness properties (using 
tools)

Implement models in Java

Relate models and implementations

6
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Concurrent Processes

Model: process ~
Finite State Processes 
(FSP)

Practice: process ~
Java thread

Concept: process ~
sequences of actions

We structure complex systems as sets of 
simpler activities, each represented as a 
(sequential) process

Processes can be concurrent

Designing concurrent software:
  - complex and error prone

8
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Modelling Processes

Models are described using state machines, known as Labelled 
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

Analysed/Displayed by the LTS Analyser (LTSA)

♦ FSP - algebraic form

♦ LTS - graphical form

SWITCH = OFF,
OFF    = (on -> ON),
ON     = (off-> OFF).
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Modelling Processes 

A process  is modelled by a sequential program.

It is modelled as a finite state machine  which transits from 
state to state by executing a sequence of atomic actions.

a light switch 
LTS

onàoffàonàoffàonàoffà ……….
a sequence of 
actions or trace
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FSP - action prefix & recursion

SWITCH = OFF,
OFF    = (on -> ON),
ON     = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF    = (on ->(off->OFF)).

Again?:

SWITCH = (on->off->SWITCH).

11
11
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Animation using LTSA

Ticked actions are eligible for 
selection.

In the LTS, the last action is 
highlighted in red. 

The LTSA animator can be used 
to produce a trace.
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FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
      -> TRAFFICLIGHT).

LTS?

Trace(s)?

FSP model of a traffic light:
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FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
      -> TRAFFICLIGHT).

LTS?

Trace(s)?

FSP model of a traffic light:

redàorangeàgreenàorangeàredàorangeàgreen …

What would the LTS look like for?:
T = (red->orange->green->orange->STOP).
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FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a 
process which initially engages in either of the actions x or 
y.  After the first action has occurred, the subsequent 
behavior is described by P if the first action was x; and Q if 
the first action was y.

Who or what makes the choice?

Is there a difference between input and output 
actions?

14
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FSP - choice

DRINKS = (red->coffee->DRINKS 
         |blue->tea->DRINKS
         ).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :
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in x and then non-deterministically behaves 
as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a coin.

Possible traces?

LTS?
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Single slot buffer that inputs a value in the range 0 to 3 and 
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

Could we have made this process w/o using the indices?

BUFF = (in_0->out_0->BUFF
       |in_1->out_1->BUFF
       |in_2->out_2->BUFF
       |in_3->out_3->BUFF
       ).

Define then Use (as in programming languages)

BUFF = (in[0]->out[0]->BUFF
       |in[1]->out[1]->BUFF
       |in[2]->out[2]->BUFF
       |in[3]->out[3]->BUFF
       ).

...or...:
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FSP - indexed processes and actions (cont’d)

BUFF = (in[i:0..3]->out[i]-> BUFF).

equivalent to

BUFF        = (in[i:0..3]->OUT[i]),

OUT[i:0..3] = (out[i]->BUFF).

equivalent to

BUFF        = (in[i:0..3]->OUT[i]),

OUT[j:0..3] = (out[j]->BUFF).
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const N = 1
range T = 0..N
range R = 0..2*N

SUM        = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

FSP - constant & range declaration

index expressions to 
model calculation:

22
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FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the 
guard B is true then the actions x and y are both eligible to 
be chosen, otherwise if B is false then the action x cannot 
be chosen. 

COUNT (N=3)     = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
                |when(i>0) dec->COUNT[i-1]
                ).

LTS?

Could we have made this process w/o using the guards?
23
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FSP - guarded actions

A countdown timer which beeps after N ticks, or can be 
stopped.
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FSP - guarded actions

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (when(i>0) tick->COUNTDOWN[i-1]
     |when(i==0)beep->STOP
  |stop->STOP
   ).

A countdown timer which beeps after N ticks, or can be 
stopped.
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FSP - guarded actions

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (when(i>0) tick->COUNTDOWN[i-1]
     |when(i==0)beep->STOP
  |stop->STOP
   ).

A countdown timer which beeps after N ticks, or can be 
stopped.

24
24



DM519 Concurrent Programming

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) do_anything->P).
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FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) do_anything->P).
 

Answer:

STOP

25
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FSP - process alphabets

The alphabet of a process is the set of actions in which it 
can engage. 
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FSP - process alphabets

The alphabet of a process is the set of actions in which it 
can engage. 

Alphabet extension can be used to extend the implicit alphabet 
of a process:
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FSP - process alphabets

The alphabet of a process is the set of actions in which it 
can engage. 

Alphabet extension can be used to extend the implicit alphabet 
of a process:

WRITER = (write[1]->write[3]->WRITER) 
  +{write[0..3]}.
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FSP - process alphabets

The alphabet of a process is the set of actions in which it 
can engage. 

Alphabet extension can be used to extend the implicit alphabet 
of a process:

WRITER = (write[1]->write[3]->WRITER) 
  +{write[0..3]}.

Alphabet of WRITER is  the set {write[0..3]}

(we make use of alphabet extensions in later chapters)
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Practice

Threads in Java
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2.2   Implementing processes

Modelling processes as 
finite state machines using 
FSP/LTS.

Implementing threads in 
Java.
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2.2   Implementing processes

Modelling processes as 
finite state machines using 
FSP/LTS.

Implementing threads in 
Java.

Note: to avoid confusion, we use the term process when referring 
to the models, and thread when referring to the implementation 

in Java.
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uProcess:

uData:  The heap (global, heap allocated data)
uCode:  The program (bytecode)
uStack:  The stack (local data, call stack)
uDescriptor: Program counter, stack pointer, …

One Process

data code

descriptorstack

29
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Implementing processes - the OS view

A (heavyweight) process in an operating system is 
represented by its code, data and the state of the machine 
registers, given in a descriptor. In order to support multiple 
(lightweight) threads of control, it has multiple stacks, one 
for each thread. 

data

A multi-threaded process

code descriptor

descr.

stack

Thread 1

descr.

stack

Thread 2

descr.

stack

Thread n

. . . . . .

30
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Threads in Java

A Thread class manages a single sequential thread of control. 
Threads may be created and deleted dynamically.
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Threads in Java

A Thread class manages a single sequential thread of control. 
Threads may be created and deleted dynamically.

The Thread class executes instructions 
from its method run(). The actual code 
executed depends on the implementation 
provided for run() in a derived class. 

class MyThread extends Thread {
 public void run() {
  //......
 }
}
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Threads in Java

A Thread class manages a single sequential thread of control. 
Threads may be created and deleted dynamically.

The Thread class executes instructions 
from its method run(). The actual code 
executed depends on the implementation 
provided for run() in a derived class. 

class MyThread extends Thread {
 public void run() {
  //......
 }
}

Thread x = new MyThread();
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Threads in Java

A Thread class manages a single sequential thread of control. 
Threads may be created and deleted dynamically.

Thread

    run()

MyThread

    run()

The Thread class executes instructions 
from its method run(). The actual code 
executed depends on the implementation 
provided for run() in a derived class. 

class MyThread extends Thread {
 public void run() {
  //......
 }
}

Thread x = new MyThread();
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Threads  in Java (cont’d)

Since Java does not permit multiple inheritance, we often 
implement the run() method in a class not derived from Thread 
but from the interface Runnable.
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Threads  in Java (cont’d)

Since Java does not permit multiple inheritance, we often 
implement the run() method in a class not derived from Thread 
but from the interface Runnable.

public interface Runnable {
    public abstract void run();
}

class MyRun implements Runnable {
    public void run() {
        //......
    }
}
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Threads  in Java (cont’d)

Since Java does not permit multiple inheritance, we often 
implement the run() method in a class not derived from Thread 
but from the interface Runnable.

public interface Runnable {
    public abstract void run();
}

class MyRun implements Runnable {
    public void run() {
        //......
    }
}

Thread x = new Thread(new MyRun());
32
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Threads  in Java (cont’d)

Since Java does not permit multiple inheritance, we often 
implement the run() method in a class not derived from Thread 
but from the interface Runnable.

Runnable

run()

MyRun

run()

Thread
target

public interface Runnable {
    public abstract void run();
}

class MyRun implements Runnable {
    public void run() {
        //......
    }
}

Thread x = new Thread(new MyRun());
32
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Thread Life-Cycle

Java Thread Life-Cycle:

Running
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Thread Life-Cycle

Java Thread Life-Cycle:

Running
• start()
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Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• start()
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Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• sleep(kmsec)  wakeup
• wait()  notify()
• I/O block  unblock
• suspend()  resume()• start()
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Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• sleep(kmsec)  wakeup
• wait()  notify()
• I/O block  unblock
• suspend()  resume()

• stop()
• destroy()
• run() terminates

• start()

33
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Example: Countdown timer

Model <-> Impl.
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CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (when(i>0)  tick->COUNTDOWN[i-1]
     |when(i==0) beep->STOP
  |stop->STOP
   ).
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CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (when(i>0)  tick->COUNTDOWN[i-1]
     |when(i==0) beep->STOP
  |stop->STOP
   ).
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CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (when(i>0)  tick->COUNTDOWN[i-1]
     |when(i==0) beep->STOP
  |stop->STOP
   ).

Implementation in Java? 
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CountDown class

public class CountDown implements Runnable {
    Thread counter;
    int i;
    final static int N = 3;

    public void run()      { ... }
    public void start()    { ... }
    public void stop()     { ... }
    protected void tick()  { ... }
    protected void beep()  { ... }
}
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CountDown class

public class CountDown implements Runnable {
    Thread counter;
    int i;
    final static int N = 3;

    public void run()      { ... }
    public void start()    { ... }
    public void stop()     { ... }
    protected void tick()  { ... }
    protected void beep()  { ... }
}
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CountDown class - start(), stop() and run()

COUNTDOWN Model
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CountDown class - start(), stop() and run()

COUNTDOWN Model

start -> CountDown[N]
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

COUNTDOWN Model

start -> CountDown[N]
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 

37
37



DM519 Concurrent Programming

CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {
      if (i>0)  { tick(); --i; }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 
 when(i>0) tick -> CD[i-1]
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {
      if (i>0)  { tick(); --i; }
      if (i==0) { beep(); return;}

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {
      if (i>0)  { tick(); --i; }
      if (i==0) { beep(); return;}
      if (counter == null) return;

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP
 stop->STOP
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CountDown class - start(), stop() and run()

  public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {
      if (i>0)  { tick(); --i; }
      if (i==0) { beep(); return;}
      if (counter == null) return;
    }
  }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop 
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP
 stop->STOP

STOP ~ run() terminates
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CountDown class – the output actions: tick() and 
beep()

    protected void tick() {
        <<emit tick sound>>
        try {
            Thread.sleep(1000);
        } catch(InterruptedException iex){
            // ignore (in this toy-example)
        } 
    }

    protected void beep() {
        <<emit beep sound>>
    }
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Summary

Concepts
– process - unit of concurrency, execution of a program 

Models
– LTS (Labelled Transition System) to model processes as state 

machines - sequences of atomic actions
– FSP (Finite State Process) to specify processes using prefix 

“->”, choice ” | ” and recursion
Practice

– Java threads to implement processes
– Thread lifecycle

(created, running, runnable, non-runnable, terminated)
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Near Future

Lecture Tuesday:
– M&K: Chapter 3

Discussion Sections & Study Groups
– Details are in Weekly Note 1
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