
DM519 Concurrent Programming

Lecture 1: Introduction, Processes & Threads

Teacher
Peter Schneider-Kamp

<petersk@imada.sdu.dk>

Teaching Assistants
Nikolai Nøjgaard

<nnoej10@student.sdu.dk>
Abyayananda Maiti

<abyaym@imada.sdu.dk>

Textbook
[M&K] Concurrency: State Models &

Java Programs (2nd edition). Jeff
Magee & Jeff Kramer. Wiley. 2006,
ISBN: 0-470-09355-2

Course Home Page
http://imada.sdu.dk/~petersk/DM519/

1
1

mailto:petersk@imada.sdu.dk
mailto:petersk@imada.sdu.dk
mailto:nnoej10@student.sdu.dk
mailto:nnoej10@student.sdu.dk
mailto:abyaym@imada.sdu.dk
mailto:abyaym@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM519/
http://imada.sdu.dk/~petersk/DM519/

DM519 Concurrent Programming

What is a Concurrent Program?

2
2

DM519 Concurrent Programming

What is a Concurrent Program?

A sequential program has a single thread
of control.

2
2

DM519 Concurrent Programming

What is a Concurrent Program?

A sequential program has a single thread
of control.

A concurrent program has multiple
threads of control:

– perform multiple computations in parallel
– control multiple external activities

occurring simultaneously.

2
2

DM519 Concurrent Programming

Why Concurrent Programming?

3
3

DM519 Concurrent Programming

Why Concurrent Programming?

More appropriate program structure
– Concurrency reflected in program

3
3

DM519 Concurrent Programming

Why Concurrent Programming?

More appropriate program structure
– Concurrency reflected in program

Performance gain from multiprocessing HW
– Parallelism

3
3

DM519 Concurrent Programming

Why Concurrent Programming?

More appropriate program structure
– Concurrency reflected in program

Performance gain from multiprocessing HW
– Parallelism

Increased application throughput
– An I/O call need only block one thread

3
3

DM519 Concurrent Programming

Why Concurrent Programming?

More appropriate program structure
– Concurrency reflected in program

Performance gain from multiprocessing HW
– Parallelism

Increased application throughput
– An I/O call need only block one thread

Increased application responsiveness
– High-priority thread for user requests

3
3

DM519 Concurrent Programming

Concurrency is much Harder

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)
– Programs are harder to debug(!) (Heisenbugs)

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)
– Programs are harder to debug(!) (Heisenbugs)
– Errors are not always reproducible(!)

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)
– Programs are harder to debug(!) (Heisenbugs)
– Errors are not always reproducible(!)
– New kinds of errors possible(!):

4
4

DM519 Concurrent Programming

Concurrency is much Harder

Harder than sequential programming:
– Huge number of possible executions
– Inherently non-deterministic
– Parallelism conceptually harder

Consequences:
– Programs are harder to write(!)
– Programs are harder to debug(!) (Heisenbugs)
– Errors are not always reproducible(!)
– New kinds of errors possible(!):

• Deadlock, starvation, priority inversion, interference, …

4
4

DM519 Concurrent Programming

Solution: Model-based Design

REAL PROBLEM

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects
REAL PROBLEM

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects

Design abstract model
REAL PROBLEM

abstract

MODEL

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects

Design abstract model

Decompose model

REAL PROBLEM

abstract

MODEL

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects

Design abstract model

Decompose model

Reason/Test/Verify model
– individual parts and whole

REAL PROBLEM

abstract

? ?
?

?

MODEL

test
reason

verify

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects

Design abstract model

Decompose model

Reason/Test/Verify model
– individual parts and whole

Recompose insights
– make model safe

REAL PROBLEM

SAFE MODEL

abstract

? ?
?

?

MODEL

test
reason

verify

5
5

DM519 Concurrent Programming

Solution: Model-based Design

Model: a simplified representation
of the real world.

– focus on concurrency aspects

Design abstract model

Decompose model

Reason/Test/Verify model
– individual parts and whole

Recompose insights
– make model safe

Implement concrete program

concretize

REAL PROBLEM

SAFE MODEL

SAFE PROGRAM

abstract

? ?
?

?

MODEL

test
reason

verify

5
5

DM519 Concurrent Programming

What you will be able to do after the course

6
6

DM519 Concurrent Programming

What you will be able to do after the course

Construct models from specifications of concurrency
problems

6
6

DM519 Concurrent Programming

What you will be able to do after the course

Construct models from specifications of concurrency
problems

Test, analyze, and compare models’ behavior

6
6

DM519 Concurrent Programming

What you will be able to do after the course

Construct models from specifications of concurrency
problems

Test, analyze, and compare models’ behavior

Define and verify models’ safety/liveness properties (using
tools)

6
6

DM519 Concurrent Programming

What you will be able to do after the course

Construct models from specifications of concurrency
problems

Test, analyze, and compare models’ behavior

Define and verify models’ safety/liveness properties (using
tools)

Implement models in Java

6
6

DM519 Concurrent Programming

What you will be able to do after the course

Construct models from specifications of concurrency
problems

Test, analyze, and compare models’ behavior

Define and verify models’ safety/liveness properties (using
tools)

Implement models in Java

Relate models and implementations

6
6

DM519 Concurrent Programming

How to achieve them?

7
7

DM519 Concurrent Programming

How to achieve them?

Lectures

7
7

DM519 Concurrent Programming

How to achieve them?

Lectures

Theoretical exercises during the discussion sections

7
7

DM519 Concurrent Programming

How to achieve them?

Lectures

Theoretical exercises during the discussion sections

Practical exercises in your study groups

7
7

DM519 Concurrent Programming

How to achieve them?

Lectures

Theoretical exercises during the discussion sections

Practical exercises in your study groups

Evaluation: Graded project exam
– mid-quarter deadline for model
– end-quarter deadline for implementation & report

7
7

DM519 Concurrent Programming

How to achieve them?

Lectures

Theoretical exercises during the discussion sections

Practical exercises in your study groups

Evaluation: Graded project exam
– mid-quarter deadline for model
– end-quarter deadline for implementation & report

7
7

DM519 Concurrent Programming

Concurrent Processes

8
8

DM519 Concurrent Programming

Concurrent Processes

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

8
8

DM519 Concurrent Programming

Concurrent Processes

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

8
8

DM519 Concurrent Programming

Concurrent Processes

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Concurrent Processes

Concept: process ~
sequences of actions

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Concurrent Processes

Concept: process ~
sequences of actions

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Concurrent Processes

Model: process ~
Finite State Processes
(FSP)

Concept: process ~
sequences of actions

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Concurrent Processes

Model: process ~
Finite State Processes
(FSP)

Concept: process ~
sequences of actions

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Concurrent Processes

Model: process ~
Finite State Processes
(FSP)

Practice: process ~
Java thread

Concept: process ~
sequences of actions

We structure complex systems as sets of
simpler activities, each represented as a
(sequential) process

Processes can be concurrent

Designing concurrent software:
 - complex and error prone

8
8

DM519 Concurrent Programming

Modelling Processes

9
9

DM519 Concurrent Programming

Modelling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

9
9

DM519 Concurrent Programming

Modelling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

9
9

DM519 Concurrent Programming

Modelling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

Analysed/Displayed by the LTS Analyser (LTSA)

9
9

DM519 Concurrent Programming

Modelling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

Analysed/Displayed by the LTS Analyser (LTSA)

♦ FSP - algebraic form

9
9

DM519 Concurrent Programming

Modelling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

Analysed/Displayed by the LTS Analyser (LTSA)

♦ FSP - algebraic form

♦ LTS - graphical form

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

9
9

DM519 Concurrent Programming

Modelling Processes

10
10

DM519 Concurrent Programming

Modelling Processes

A process is modelled by a sequential program.

10
10

DM519 Concurrent Programming

Modelling Processes

A process is modelled by a sequential program.

It is modelled as a finite state machine which transits from
state to state by executing a sequence of atomic actions.

10
10

DM519 Concurrent Programming

Modelling Processes

A process is modelled by a sequential program.

It is modelled as a finite state machine which transits from
state to state by executing a sequence of atomic actions.

a light switch
LTS

10
10

DM519 Concurrent Programming

Modelling Processes

A process is modelled by a sequential program.

It is modelled as a finite state machine which transits from
state to state by executing a sequence of atomic actions.

a light switch
LTS

onàoffàonàoffàonàoffà ……….
a sequence of
actions or trace

10
10

DM519 Concurrent Programming

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

11
11

DM519 Concurrent Programming

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

11
11

DM519 Concurrent Programming

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

Again?:

11
11

DM519 Concurrent Programming

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion:

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

Again?:

SWITCH = (on->off->SWITCH).

11
11

DM519 Concurrent Programming

Animation using LTSA

Ticked actions are eligible for
selection.

In the LTS, the last action is
highlighted in red.

The LTSA animator can be used
to produce a trace.

12
12

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

FSP model of a traffic light:

13
13

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS?

FSP model of a traffic light:

13
13

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS?

FSP model of a traffic light:

13
13

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS?

Trace(s)?

FSP model of a traffic light:

13
13

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS?

Trace(s)?

FSP model of a traffic light:

redàorangeàgreenàorangeàredàorangeàgreen …

13
13

DM519 Concurrent Programming

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
 -> TRAFFICLIGHT).

LTS?

Trace(s)?

FSP model of a traffic light:

redàorangeàgreenàorangeàredàorangeàgreen …

What would the LTS look like for?:
T = (red->orange->green->orange->STOP).

13
13

DM519 Concurrent Programming

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a
process which initially engages in either of the actions x or
y. After the first action has occurred, the subsequent
behavior is described by P if the first action was x; and Q if
the first action was y.

14
14

DM519 Concurrent Programming

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a
process which initially engages in either of the actions x or
y. After the first action has occurred, the subsequent
behavior is described by P if the first action was x; and Q if
the first action was y.

Who or what makes the choice?

14
14

DM519 Concurrent Programming

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a
process which initially engages in either of the actions x or
y. After the first action has occurred, the subsequent
behavior is described by P if the first action was x; and Q if
the first action was y.

Who or what makes the choice?

Is there a difference between input and output
actions?

14
14

DM519 Concurrent Programming

FSP - choice

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS
).

FSP model of a drinks machine :

15
15

DM519 Concurrent Programming

FSP - choice

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS
).

LTS generated using LTSA:

FSP model of a drinks machine :

15
15

DM519 Concurrent Programming

FSP - choice

DRINKS = (red->coffee->DRINKS
 |blue->tea->DRINKS
).

LTS generated using LTSA:

Possible traces?

FSP model of a drinks machine :

15
15

DM519 Concurrent Programming

Non-deterministic choice

Process (x -> P | x -> Q) describes a process which engages
in x and then non-deterministically behaves
as either P or Q.

16
16

DM519 Concurrent Programming

Non-deterministic choice

Process (x -> P | x -> Q) describes a process which engages
in x and then non-deterministically behaves
as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a coin.

16
16

DM519 Concurrent Programming

Non-deterministic choice

Process (x -> P | x -> Q) describes a process which engages
in x and then non-deterministically behaves
as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a coin.

LTS?

16
16

DM519 Concurrent Programming

Non-deterministic choice

Process (x -> P | x -> Q) describes a process which engages
in x and then non-deterministically behaves
as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a coin.

LTS?

16
16

DM519 Concurrent Programming

Non-deterministic choice

Process (x -> P | x -> Q) describes a process which engages
in x and then non-deterministically behaves
as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

Tossing a coin.

Possible traces?

LTS?

16
16

DM519 Concurrent Programming

Example: Modelling unreliable communication
channel

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

17
17

DM519 Concurrent Programming

Example: Modelling unreliable communication
channel

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

Use non-determinism...:

17
17

DM519 Concurrent Programming

Example: Modelling unreliable communication
channel

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

CHAN = (in->CHAN
 |in->out->CHAN
).

Use non-determinism...:

17
17

DM519 Concurrent Programming

Example: Modelling unreliable communication
channel

How do we model an unreliable communication channel which
accepts in actions and if a failure occurs produces no output,
otherwise performs an out action?

CHAN = (in->CHAN
 |in->out->CHAN
).

Use non-determinism...:

17
17

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

18
18

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

18
18

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

Define then Use (as in programming languages)

18
18

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

Could we have made this process w/o using the indices?

Define then Use (as in programming languages)

18
18

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

Could we have made this process w/o using the indices?

BUFF = (in_0->out_0->BUFF
 |in_1->out_1->BUFF
 |in_2->out_2->BUFF
 |in_3->out_3->BUFF
).

Define then Use (as in programming languages)

18
18

DM519 Concurrent Programming

Single slot buffer that inputs a value in the range 0 to 3 and
then outputs that value:

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

Could we have made this process w/o using the indices?

BUFF = (in_0->out_0->BUFF
 |in_1->out_1->BUFF
 |in_2->out_2->BUFF
 |in_3->out_3->BUFF
).

Define then Use (as in programming languages)

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF
).

...or...:

18
18

DM519 Concurrent Programming

Indices (cont’d)

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF).

BUFF = (in[i:0..3]->out[i]-> BUFF). or

19
19

DM519 Concurrent Programming

Indices (cont’d)

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF).

LTS?

BUFF = (in[i:0..3]->out[i]-> BUFF). or

19
19

DM519 Concurrent Programming

Indices (cont’d)

BUFF = (in[0]->out[0]->BUFF
 |in[1]->out[1]->BUFF
 |in[2]->out[2]->BUFF
 |in[3]->out[3]->BUFF).

LTS?

BUFF = (in[i:0..3]->out[i]-> BUFF). or

19
19

DM519 Concurrent Programming

FSP - indexed processes and actions (cont’d)

BUFF = (in[i:0..3]->out[i]-> BUFF).

20
20

DM519 Concurrent Programming

FSP - indexed processes and actions (cont’d)

BUFF = (in[i:0..3]->out[i]-> BUFF).

equivalent to

BUFF = (in[i:0..3]->OUT[i]),

OUT[i:0..3] = (out[i]->BUFF).

20
20

DM519 Concurrent Programming

FSP - indexed processes and actions (cont’d)

BUFF = (in[i:0..3]->out[i]-> BUFF).

equivalent to

BUFF = (in[i:0..3]->OUT[i]),

OUT[i:0..3] = (out[i]->BUFF).

equivalent to

BUFF = (in[i:0..3]->OUT[i]),

OUT[j:0..3] = (out[j]->BUFF).

20
20

DM519 Concurrent Programming

FSP - constant & addition

index expressions to
model calculation:

21
21

DM519 Concurrent Programming

const N = 1

SUM = (in[a:0..N][b:0..N]->TOTAL[a+b]),
TOTAL[s:0..2*N] = (out[s]->SUM).

FSP - constant & addition

index expressions to
model calculation:

21
21

DM519 Concurrent Programming

const N = 1

SUM = (in[a:0..N][b:0..N]->TOTAL[a+b]),
TOTAL[s:0..2*N] = (out[s]->SUM).

FSP - constant & addition

index expressions to
model calculation:

21
21

DM519 Concurrent Programming

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

FSP - constant & range declaration

index expressions to
model calculation:

22
22

DM519 Concurrent Programming

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot
be chosen.

23
23

DM519 Concurrent Programming

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot
be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

23
23

DM519 Concurrent Programming

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot
be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

LTS?

23
23

DM519 Concurrent Programming

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot
be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

LTS?

23
23

DM519 Concurrent Programming

FSP - guarded actions

The choice (when B x -> P | y -> Q) means that when the
guard B is true then the actions x and y are both eligible to
be chosen, otherwise if B is false then the action x cannot
be chosen.

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

LTS?

Could we have made this process w/o using the guards?
23

23

DM519 Concurrent Programming

FSP - guarded actions

A countdown timer which beeps after N ticks, or can be
stopped.

24
24

DM519 Concurrent Programming

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP
 |stop->STOP
).

A countdown timer which beeps after N ticks, or can be
stopped.

24
24

DM519 Concurrent Programming

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0)beep->STOP
 |stop->STOP
).

A countdown timer which beeps after N ticks, or can be
stopped.

24
24

DM519 Concurrent Programming

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) do_anything->P).

25
25

DM519 Concurrent Programming

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) do_anything->P).

Answer:

STOP

25
25

DM519 Concurrent Programming

FSP - process alphabets

The alphabet of a process is the set of actions in which it
can engage.

26
26

DM519 Concurrent Programming

FSP - process alphabets

The alphabet of a process is the set of actions in which it
can engage.

Alphabet extension can be used to extend the implicit alphabet
of a process:

26
26

DM519 Concurrent Programming

FSP - process alphabets

The alphabet of a process is the set of actions in which it
can engage.

Alphabet extension can be used to extend the implicit alphabet
of a process:

WRITER = (write[1]->write[3]->WRITER)
 +{write[0..3]}.

26
26

DM519 Concurrent Programming

FSP - process alphabets

The alphabet of a process is the set of actions in which it
can engage.

Alphabet extension can be used to extend the implicit alphabet
of a process:

WRITER = (write[1]->write[3]->WRITER)
 +{write[0..3]}.

Alphabet of WRITER is the set {write[0..3]}

(we make use of alphabet extensions in later chapters)

26
26

DM519 Concurrent Programming

Practice

Threads in Java

27
27

DM519 Concurrent Programming

2.2 Implementing processes

Modelling processes as
finite state machines using
FSP/LTS.

Implementing threads in
Java.

28
28

DM519 Concurrent Programming

2.2 Implementing processes

Modelling processes as
finite state machines using
FSP/LTS.

Implementing threads in
Java.

Note: to avoid confusion, we use the term process when referring
to the models, and thread when referring to the implementation

in Java.

28
28

DM519 Concurrent Programming

uProcess:

uData: The heap (global, heap allocated data)
uCode: The program (bytecode)
uStack: The stack (local data, call stack)
uDescriptor: Program counter, stack pointer, …

One Process

data code

descriptorstack

29
29

DM519 Concurrent Programming

Implementing processes - the OS view

A (heavyweight) process in an operating system is
represented by its code, data and the state of the machine
registers, given in a descriptor. In order to support multiple
(lightweight) threads of control, it has multiple stacks, one
for each thread.

data

A multi-threaded process

code descriptor

descr.

stack

Thread 1

descr.

stack

Thread 2

descr.

stack

Thread n

.

30
30

DM519 Concurrent Programming

Threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

31
31

DM519 Concurrent Programming

Threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

The Thread class executes instructions
from its method run(). The actual code
executed depends on the implementation
provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }
}

31
31

DM519 Concurrent Programming

Threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

The Thread class executes instructions
from its method run(). The actual code
executed depends on the implementation
provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }
}

Thread x = new MyThread();

31
31

DM519 Concurrent Programming

Threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

 run()

MyThread

 run()

The Thread class executes instructions
from its method run(). The actual code
executed depends on the implementation
provided for run() in a derived class.

class MyThread extends Thread {
 public void run() {
 //......
 }
}

Thread x = new MyThread();

31
31

DM519 Concurrent Programming

Threads in Java (cont’d)

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread
but from the interface Runnable.

32
32

DM519 Concurrent Programming

Threads in Java (cont’d)

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread
but from the interface Runnable.

public interface Runnable {
 public abstract void run();
}

class MyRun implements Runnable {
 public void run() {
 //......
 }
}

32
32

DM519 Concurrent Programming

Threads in Java (cont’d)

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread
but from the interface Runnable.

public interface Runnable {
 public abstract void run();
}

class MyRun implements Runnable {
 public void run() {
 //......
 }
}

Thread x = new Thread(new MyRun());
32

32

DM519 Concurrent Programming

Threads in Java (cont’d)

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread
but from the interface Runnable.

Runnable

run()

MyRun

run()

Thread
target

public interface Runnable {
 public abstract void run();
}

class MyRun implements Runnable {
 public void run() {
 //......
 }
}

Thread x = new Thread(new MyRun());
32

32

DM519 Concurrent Programming

Thread Life-Cycle

Java Thread Life-Cycle:

Running

33
33

DM519 Concurrent Programming

Thread Life-Cycle

Java Thread Life-Cycle:

Running
• start()

33
33

DM519 Concurrent Programming

Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• start()

33
33

DM519 Concurrent Programming

Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• sleep(kmsec) wakeup
• wait() notify()
• I/O block unblock
• suspend() resume()• start()

33
33

DM519 Concurrent Programming

Thread Life-Cycle

Java Thread Life-Cycle:

Running
 schedule
 yield()

• sleep(kmsec) wakeup
• wait() notify()
• I/O block unblock
• suspend() resume()

• stop()
• destroy()
• run() terminates

• start()

33
33

DM519 Concurrent Programming

Example: Countdown timer

Model <-> Impl.

34
34

DM519 Concurrent Programming

CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0) beep->STOP
 |stop->STOP
).

35
35

DM519 Concurrent Programming

CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0) beep->STOP
 |stop->STOP
).

35
35

DM519 Concurrent Programming

CountDown timer example

const N = 3
COUNTDOWN = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =
 (when(i>0) tick->COUNTDOWN[i-1]
 |when(i==0) beep->STOP
 |stop->STOP
).

Implementation in Java?

35
35

DM519 Concurrent Programming

CountDown class

public class CountDown implements Runnable {
 Thread counter;
 int i;
 final static int N = 3;

 public void run() { ... }
 public void start() { ... }
 public void stop() { ... }
 protected void tick() { ... }
 protected void beep() { ... }
}

36
36

DM519 Concurrent Programming

CountDown class

public class CountDown implements Runnable {
 Thread counter;
 int i;
 final static int N = 3;

 public void run() { ... }
 public void start() { ... }
 public void stop() { ... }
 protected void tick() { ... }
 protected void beep() { ... }
}

36
36

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

COUNTDOWN Model

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

COUNTDOWN Model

start -> CountDown[N]

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

COUNTDOWN Model

start -> CountDown[N]

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (i>0) { tick(); --i; }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop
 when(i>0) tick -> CD[i-1]

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 if (counter == null) return;

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP
 stop->STOP

37
37

DM519 Concurrent Programming

CountDown class - start(), stop() and run()

 public void start() {
 counter = new Thread(this);
 i = N; counter.start();
 }

 public void stop() {
 counter = null;
 }

 public void run() {
 while(true) {
 if (i>0) { tick(); --i; }
 if (i==0) { beep(); return;}
 if (counter == null) return;
 }
 }

COUNTDOWN Model

start -> CountDown[N]

stop -> STOP

COUNTDOWN[i] process
 recursion as a while loop
 when(i>0) tick -> CD[i-1]
 when(i==0)beep -> STOP
 stop->STOP

STOP ~ run() terminates

37
37

DM519 Concurrent Programming

CountDown class – the output actions: tick() and
beep()

 protected void tick() {
 <<emit tick sound>>
 try {
 Thread.sleep(1000);
 } catch(InterruptedException iex){
 // ignore (in this toy-example)
 }
 }

 protected void beep() {
 <<emit beep sound>>
 }

38
38

DM519 Concurrent Programming

Summary

Concepts
– process - unit of concurrency, execution of a program

Models
– LTS (Labelled Transition System) to model processes as state

machines - sequences of atomic actions
– FSP (Finite State Process) to specify processes using prefix

“->”, choice ” | ” and recursion
Practice

– Java threads to implement processes
– Thread lifecycle

(created, running, runnable, non-runnable, terminated)

39
39

DM519 Concurrent Programming

Near Future

Lecture Tuesday:
– M&K: Chapter 3

Discussion Sections & Study Groups
– Details are in Weekly Note 1

40
40

