
DM519 Concurrent Programming

Exam Questions & Revision

1
1

DM519 Concurrent Programming

The Main Aims Of The Course

Construct models from specifications of concurrency problems

2
2

DM519 Concurrent Programming

The Main Aims Of The Course

Construct models from specifications of concurrency problems

Test, analyse, and compare models’ behaviour

2
2

DM519 Concurrent Programming

The Main Aims Of The Course

Construct models from specifications of concurrency problems

Test, analyse, and compare models’ behaviour

Define and verify models’ safety & liveness properties

2
2

DM519 Concurrent Programming

The Main Aims Of The Course

Construct models from specifications of concurrency problems

Test, analyse, and compare models’ behaviour

Define and verify models’ safety & liveness properties

Implement models in Java

2
2

DM519 Concurrent Programming

The Main Aims Of The Course

Construct models from specifications of concurrency problems

Test, analyse, and compare models’ behaviour

Define and verify models’ safety & liveness properties

Implement models in Java

Relate models and implementations

2
2

DM519 Concurrent Programming 3

CSP

The following is a sample of some of the covered topics

Revision

3

DM519 Concurrent Programming

Outline Of Covered Chapters

4

2. Processes and Threads

3. Concurrent Execution

4. Shared Objects & Interference

5. Monitors & Condition Synchronisation

6. Deadlock

7. Safety and Liveness Properties

8. Model-based Design

9. Dynamic systems

10.Message Passing

Concepts
Models
Practice

The main basic

Advanced topics …

4

DM519 Concurrent Programming

Models: FSP & LTS

Model = simplified representation of the real world

u Based on Labelled Transition Systems (LTS):

u Described textually as Finite State Processes (FSP):

EngineOff = (engineOn -> EngineOn),
EngineOn = (engineOff -> EngineOff
 |speed -> EngineOn).

Focuses on concurrency aspects (of the program)
- everything else abstracted away

5
5

DM519 Concurrent Programming

Finite State Processes (FSP)

FSPs can be defined using:
P =
– x -> Q // action
– Q // other process variable
– STOP // termination
– Q | R // choice
– when (...) x -> Q // guard
– ... + {write[0..3]} // alphabet extension
– X[i:0..N] =x[N-i] -> P // process & action index
– BUFF(N=3) // process parameter

const N = 3 // constant definitions
range R = 0..N // range definitions
set S = {a,b,c} // set definitions

6
6

DM519 Concurrent Programming

Finite State Processes (FSP)

FSPs can be defined using:
P =
– x -> Q // action
– Q // other process variable
– STOP // termination
– Q | R // choice
– when (...) x -> Q // guard
– ... + {write[0..3]} // alphabet extension
– X[i:0..N] =x[N-i] -> P // process & action index
– BUFF(N=3) // process parameter

const N = 3 // constant definitions
range R = 0..N // range definitions
set S = {a,b,c} // set definitions

6

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

6

DM519 Concurrent Programming

Finite State Processes (FSP)

FSPs can be defined using:
P =
– x -> Q // action
– Q // other process variable
– STOP // termination
– Q | R // choice
– when (...) x -> Q // guard
– ... + {write[0..3]} // alphabet extension
– X[i:0..N] =x[N-i] -> P // process & action index
– BUFF(N=3) // process parameter

const N = 3 // constant definitions
range R = 0..N // range definitions
set S = {a,b,c} // set definitions

6

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

6

DM519 Concurrent Programming

Finite State Processes (FSP)

7
7

DM519 Concurrent Programming

Finite State Processes (FSP)
FSP:

– P || Q // parallel composition
– a:P // process labelling (1 process/prefix)
– {…}::P // process sharing (1 process w/all prefixes)
– P / {x/y} // action relabelling
– P \ {…} // hiding
– P @ {…} // keeping (hide complement)

7
7

DM519 Concurrent Programming

Finite State Processes (FSP)
FSP:

– P || Q // parallel composition
– a:P // process labelling (1 process/prefix)
– {…}::P // process sharing (1 process w/all prefixes)
– P / {x/y} // action relabelling
– P \ {…} // hiding
– P @ {…} // keeping (hide complement)

7

||TWOBUF = (a:BUFF||b:BUFF)
 /{in/a.in,
 a.out/b.in,
 out/b.out}
 @{in,out}.

7

DM519 Concurrent Programming

Finite State Processes (FSP)
FSP:

– P || Q // parallel composition
– a:P // process labelling (1 process/prefix)
– {…}::P // process sharing (1 process w/all prefixes)
– P / {x/y} // action relabelling
– P \ {…} // hiding
– P @ {…} // keeping (hide complement)

7

||TWOBUF = (a:BUFF||b:BUFF)
 /{in/a.in,
 a.out/b.in,
 out/b.out}
 @{in,out}.

7

DM519 Concurrent Programming

Finite State Processes (FSP)
FSP:

– P || Q // parallel composition
– a:P // process labelling (1 process/prefix)
– {…}::P // process sharing (1 process w/all prefixes)
– P / {x/y} // action relabelling
– P \ {…} // hiding
– P @ {…} // keeping (hide complement)

 Structure Diagrams:

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

7

||TWOBUF = (a:BUFF||b:BUFF)
 /{in/a.in,
 a.out/b.in,
 out/b.out}
 @{in,out}.

7

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

8
8

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

8
8

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

8
8

DM519 Concurrent Programming

How To Create The Parallel Composed LTS

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

9

For any state reachable from
the initial state (0,0), consider
the possible actions and draw
edges

to the corresponding new
states (i,j).

Remember to consider shared
actions.

make ready

make

make

ready

ready

readyreadyready

use use use

0,0

0,1

0,2

1,0

1,2

1,1

2,0

2,2

2,1

9

DM519 Concurrent Programming

How To Create The Parallel Composed LTS

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).

||MAKE1_USE1 = (MAKE1 || USE1).

9

For any state reachable from
the initial state (0,0), consider
the possible actions and draw
edges

to the corresponding new
states (i,j).

Remember to consider shared
actions.

make ready

make

make

ready

ready

readyreadyready

use use use

0,0

0,1

0,2

1,0

1,2

1,1

2,0

2,2

2,1

9

DM519 Concurrent Programming

Chapter 4: Shared Objects & Mutual Exclusion

u Concepts:

l Process interference

l Mutual exclusion

u Models:

l Model-checking for interference

l Modelling mutual exclusion

u Practice:

l Thread interference in shared objects in Java

l Mutual exclusion in Java

l Synchronised objects, methods, and statements

10
10

DM519 Concurrent Programming

Condition Synchronisation In FSP And Java

FSP: when (cond) action -> NEWSTATE

synchronized void action() throws Int’Exc’ {
 while (!cond) wait();
 // modify monitor data
 notifyAll();
}

The while loop is necessary to re-test the condition cond to ensure that
cond is indeed satisfied when it re-enters the monitor.

notifyAll() is necessary to awaken other thread(s) that may be waiting to
enter the monitor now that the monitor data has been changed.

11
11

DM519 Concurrent Programming

Condition Synchronisation (in Java)

class CarParkControl {
 protected int spaces, capacity;

 synchronized void arrive()
 throws Int’Exc’ {
 while (!(spaces>0)) wait();
 --spaces;
 notifyAll();
 }

 synchronized void depart()
 throws Int’Exc’ {
 while (!(spaces<capacity)) wait();
 ++spaces;
 notifyAll();
} }

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =
 (when(spaces>0) arrive -> SPACES[spaces-1]
 |when(spaces<CAPACITY) depart -> SPACES[spaces+1]).

12
12

DM519 Concurrent Programming

Condition Synchronisation (in Java)

class CarParkControl {
 protected int spaces, capacity;

 synchronized void arrive()
 throws Int’Exc’ {
 while (!(spaces>0)) wait();
 --spaces;
 notifyAll();
 }

 synchronized void depart()
 throws Int’Exc’ {
 while (!(spaces<capacity)) wait();
 ++spaces;
 notifyAll();
} }

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =
 (when(spaces>0) arrive -> SPACES[spaces-1]
 |when(spaces<CAPACITY) depart -> SPACES[spaces+1]).

12

notify() instead of notifyAll() ?

1. Uniform waiters - everybody

waits on the same condition

2. One-in, one-out

What goes wrong with notify

and 8xDepartures, 5xArrivals?

12

DM519 Concurrent Programming

Semaphores

Semaphores are widely used for dealing with inter-process
synchronisation in operating systems.

Semaphore s : integer var that can take only non-neg. values.

sem.down(); // decrement (block if counter = 0)

sem.up(); // increment counter (allowing one blocked thread to pass)

13
13

http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN
http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN

DM519 Concurrent Programming

full

empty

synchronized public E get()
 throws InterruptedException{
 full.down(); // if no items, block!
 ...
 }

buffer

14

Nested Monitor Problem

14

DM519 Concurrent Programming

full

empty

synchronized public E get()
 throws InterruptedException{
 full.down(); // if no items, block!
 ...
 }

get down

wait

fullfull

put

buffer

14

Nested Monitor Problem

14

DM519 Concurrent Programming

Deadlock: 4 Necessary And Sufficient Conditions

1. Mutual exclusion condition (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual
 exclusion.

2. Hold-and-wait condition (aka. “Incremental acquisition”):

 processes hold on to resources already allocated to them while waiting
 to acquire additional resources.

3. No preemption condition:
 once acquired by a process, resources cannot be “pre-empted” (forcibly
 withdrawn) but are only released voluntarily.

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process
 holds a resource which its successor in the cycle is waiting to acquire.

15
15

DM519 Concurrent Programming

Deadlock: 4 Necessary And Sufficient Conditions

1. Mutual exclusion condition (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual
 exclusion.

2. Hold-and-wait condition (aka. “Incremental acquisition”):

 processes hold on to resources already allocated to them while waiting
 to acquire additional resources.

3. No preemption condition:
 once acquired by a process, resources cannot be “pre-empted” (forcibly
 withdrawn) but are only released voluntarily.

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process
 holds a resource which its successor in the cycle is waiting to acquire.

15

Deadlock avoidance:
 “Break at least one of the deadlock conditions”.

15

DM519 Concurrent Programming

♦ STOP or deadlocked state (no outgoing transitions)

♦ ERROR process (-1) to detect erroneous behaviour

7.1 Safety Properties

RESOURCE =(acquire -> ACQUIRED),
ACQUIRED =(release -> RESOURCE
 |acquire -> ERROR).

Trace to property violation in RESOURCE:
 acquire
 acquire

♦ Analysis using LTSA:
 (shortest trace)

A safety property asserts that nothing bad happens.

16
16

DM519 Concurrent Programming

Safety - Property Specification

♦ERROR conditions state what is not required (~ exceptions).

♦ In complex systems, it is usually better to specify
 safety properties by stating directly what is required.

property SAFE_RESOURCE =
 (acquire ->
 release ->
 SAFE_RESOURCE).

RESOURCE =
 (acquire ->
 (release -> RESOURCE
 |acquire -> ERROR)
 |release -> ERROR).

17

is equivalent to

17

DM519 Concurrent Programming

7.3 Liveness Properties

A safety property asserts that nothing bad happens.

A liveness property asserts that something good eventually happens.

E.g., does every car eventually get an opportunity to cross the
bridge, i.e., make progress?

A progress property asserts that it is always the case that an action is
eventually executed.

Progress is the opposite of starvation (= the name given to a
concurrent programming situation in which an action is never executed).

18
18

DM519 Concurrent Programming

Progress Properties

progress HEADS = {heads} ?

progress TAILS = {tails} ?

LTSA check progress: No progress violations detected

progress P = {a1, a2, …, an}

This defines a progress property, P, which asserts that in an infinite
execution, at least one of the actions
a1, a2, …, an will be executed infinitely often.

COIN = (toss->heads->COIN | toss->tails->COIN).

J
J

19
19

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

Models: static - fixed populations with cyclic behavior

interaction

Practice: dynamic creation and deletion of threads
 (# active threads varies during execution)

Resource allocation algorithms
Java join() method

20
20

DM519 Concurrent Programming

♦ send(e,c) - send e to
channel c. The sender is
blocked until the message is
received from the channel.

10.1 Synchronous Message Passing - Channel

Channel c
Sender

send(e,c)
Receiver
v=receive(c)

♦ v = receive(c) - receive a
value into local variable v from
channel c. The calling process is
blocked until a message is sent
to the channel.

Channel has no buffering

one-to-one

21

Corresponds to “v = e”

21

DM519 Concurrent Programming

 Selective Receive

Channels
c1
c2
cn

How
should we deal
with multiple
channels?

Sender
send(e,c)Sender
send(e,c)Sender[n]

send(en,cn)

 select
 when G1 and v1=receive(chan1) => S1;
or
 when G2 and v2=receive(chan2) => S2;
or
 …
or
 when Gn and vn=receive(chann) => Sn;
end

Select
statement...

22
22

DM519 Concurrent Programming

♦ send(e,p) - send e to port p.
The calling process is not blocked.
The message is queued at the port
if the receiver is not waiting.

10.2 Asynchronous Message Passing - Port

Port p
Receiver
v=receive(p)

♦ v = receive(p) - receive a
value into local variable v from
port p. The calling process is
blocked if no messages queued to
the port.

Sender
send(e,c)
Sender
send(e,c)Sender[n]

send(en,p)
many-to-one

23
23

DM519 Concurrent Programming

10.3 Rendezvous - Entry

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended perform service

Rendezvous is a form of request-reply to support client server
communication. Many clients may request service, but only one is
serviced at a time.

24
24

DM519 Concurrent Programming

The Main Aims Of The Course (Repetition)

Construct models from specifications of concurrency problems

Test, analyse, and compare models’ behaviour

Define and verify models’ safety & liveness properties

Implement models in Java

Relate models and implementations

25
25

