Chapter 3 Concurrent Execution w%’

DM519 Concurrent Programming 1

Repetition (Concepts, Models, and Practice) %’

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) W%’

® Concepts:

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and

construction of concurrent programs

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) W%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

&® Models:

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

&® Models:

® We use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

&® Models:

® We use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

®Practice:

DM519 Concurrent Programming 2

Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

&® Models:

® We use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

®Practice:

® We use Java for constructing concurrent programs
DM519 Concurrent Programming 2

Repetition (Models; LTS, FSP) W%’

DM519 Concurrent Programming 3

Repetition (Models; LTS, FSP) W%’

Model = simplified representation of the real world

DM519 Concurrent Programming 3

Repetition (Models; LTS, FSP) W%’

Model = simplified representation of the real world

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

DM519 Concurrent Programming 3

Repetition (Models; LTS, FSP) W%’

Model = simplified representation of the real world

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

DM519 Concurrent Programming 3

UNIVERSITY OF ISOUTHERN DENMARK

Model = simplified representation of the real world

Repetition (Models; LTS, FSP)

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

® Described textually as Finite State Processes
(FSP):

DM519 Concurrent Programming 3

Repetition (Models; LTS, FSP) %’

Model = simplified representation of the real world

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

® Described textually as Finite State Processes
(FSP)i EngineOff

EngineOn

(engineOn -> EngineOn),
(engineOff -> EngineOff
| speed -> EngineOn) .

DM519 Concurrent Programming 3

Repetition (Finite State Processes; FSP) N %’ NNNNN

Finite State Processes (FSP):

DM519 Concurrent Programming 4

Repetition (Finite State Processes; FSP) %’

Finite State Processes (FSP):
P : STOP // termination

DM519 Concurrent Programming 4

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

UNIVERSITY OF [SOUTHERN DENMARK

P

STOP

(x -> P)

// termination
// action prefix

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP) %’

Finite State Processes (FSP):

P : STOP // termination
(x -> P) // action prefix
(when (...) x -> P) // guard

DM519 Concurrent Programming

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

UNIVERSITY OF

P

STOP

(x -> P)
(when (...) x -> P)
P|P

// termination
// action prefix
// guard

// choice

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
- (x -> P) // action prefix
(when (...) x -> P) // guard
P|P // choice
P+{..} // alphabet extension

DM519 Concurrent Programming 4

UNIVERSITY OF [SOUTHERN DENMARK

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP // termination
. (x -> P) // action prefix
(when (...) x -> P) // guard
PP // choice
P+{..} // alphabet extension
X // process variable

DM519 Concurrent Programming 4

Repetition (Finite State Processes; FSP) %’

Finite State Processes (FSP):

P : STOP // termination
. (x -> P) // action prefix
(when (...) x -> P) // guard
P[P // choice
P+ ..} // alphabet extension
X // process variable
¢ action indexing x[i:1.N]->P or x[i]->P

DM519 Concurrent Programming 4

Repetition (Finite State Processes; FSP) %’

Finite State Processes (FSP):

P : STOP // termination
' (x -> P) // action prefix

(when (...) x -> P) // guard
P|P // choice
P+ ..} // alphabet extension
X // process variable

¢ action indexing x[i:1.N]->P or x[i]->P

¢ process parameters P(N=3) = ..

DM519 Concurrent Programming 4

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP
‘ (x ->P)
(when (...) x -> P)
P|P
P+{.}
X

// termination

// action prefix

// guard

// choice

// alphabet extension
// process variable

¢ action indexing
¢ process parameters

¢ constant definitions

DM519 Concurrent Programming

X[i:1.N]->P or x[i]->P
P(N=3) = ...

const N = 3

J * OF ISOUTHERN DENMARK

Repetition (Finite State Processes; FSP)

Finite State Processes (FSP):

P : STOP
‘ (x ->P)
(when (...) x -> P)
P|P
P+{.}
X

// termination

// action prefix

// guard

// choice

// alphabet extension
// process variable

¢ action indexing
¢ process parameters
¢ constant definitions

¢ range definitions

DM519 Concurrent Programming

X[i:1.N]->P or x[i]->P
P(N=3) = ...

const N = 3

range R = 0..N

J * OF ISOUTHERN DENMARK

Repetition (Finite State Processes; FSP) N %’ NNNNN

Finite State Processes (FSP):

P : STOP // termination
: (x -> P) // action prefix

(when (...) x -> P) // guard
P|P // choice
P+ ..} // alphabet extension
X // process variable

¢ action indexing x[i:1.N]->P or x[i]->P

¢ process parameters P(N=3) = ..

¢ constant definitions const N = 3

¢ range definitions range R = 0..N

Which constructions do not add expressive power?
(and are thus only "syntactic sugar").

DM519 Concurrent Programming

Repetition (Java Threads) w%’

Subclassing java.lang.Thread:

Implementing java.lang.Runnable:

DM519 Concurrent Programming 5

Repetition (Java Threads) W%’

Subclassing java.lang.Thread:

class MyThread extends Thread {
public void run() ({

/] ...

}
} Thread t = new MyThread() ;

t.start () ;
// ...

Implementing java.lang.Runnable:

DM519 Concurrent Programming 5

Repetition (Java Threads) W%’

Subclassing java.lang.Thread:

class MyThread extends Thread {
public void run() {

//

}
} Thread t = new MyThread() ;

t.start () ;
//

Implementing java.lang.Runnable:

class MyRun implements Runnable {
public void run() {

//

}
} Thread t = new Thread(new MyRun()) ;

t.start () ;
//

DM519 Concurrent Programming 5

Chapter 3: Concurrent Execution W%’

DM519 Concurrent Programming 6

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution
and interleaving

DM519 Concurrent Programming 6

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution

and interleaving
process interaction

DM519 Concurrent Programming 6

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes
interleaving

DM519 Concurrent Programming 6

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes

interleaving
interaction - shared actions
process labelling, and action relabelling and hiding

DM519 Concurrent Programming 6

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes

interleaving
interaction - shared actions
process labelling, and action relabelling and hiding
structure diagrams

DM519 Concurrent Programming

Chapter 3: Concurrent Execution W%’

ConcepTs: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes
interleaving
inferaction - shared actions

process labelling, and action relabelling and hiding
structure diagrams

Practice: Multithreaded Java programs

DM519 Concurrent Programming

Definition: Parallelism W%’

DM519 Concurrent Programming 7

Definition: Parallelism W%’

®Parallelism (aka. Real/True Concurrent Execution)

DM519 Concurrent Programming 7

Definition: Parallelism %'

®Parallelism (aka. Real/True Concurrent Execution)

®Physically simultaneous processing

DM519 Concurrent Programming 7

Definition: Parallelism %’

®Parallelism (aka. Real/True Concurrent Execution)

®Physically simultaneous processing

® Involves multiple processing elements (PEs)

and/or independent device operations

Anesssss——— - >
B | —— - -

C-———_—>

DM519 Concurrent Programming

Definition: Concurrency W%’

DM519 Concurrent Programming 8

Definition: Concurrency %'

® Concurrency (aka. Pseudo-Concurrent Execution)

® | ogically simultaneous processing

® Does not imply multiple processing elements (PEs)

DM519 Concurrent Programming 8

Definition: Concurrency %'

® Concurrency (aka. Pseudo-Concurrent Execution)

® | ogically simultaneous processing

® Does not imply multiple processing elements (PEs)

® Requires interleaved execution on a single PE

DM519 Concurrent Programming 8

Definition: Concurrency %'

® Concurrency (aka. Pseudo-Concurrent Execution)

® | ogically simultaneous processing

® Does not imply multiple processing elements (PEs)

® Requires interleaved execution on a single PE

Ammm - - -----—---- >

B - .- ----- >

Cr .- - - - -
Time

DM519 Concurrent Programming 8

Parallelism vs Concurrency %’

®Parallelism @ Concurrency
Y ——— > AN —— - -----—-—--- =
B- -=> B -- - - ----- >
C-_—_—> Cr—"- - - -8 = -1
Time Time

DM519 Concurrent Programming 9

Parallelism vs Concurrency %’

®Parallelism @ Concurrency
Y ——— > AN —— - -----—-—--- =
B- -=> B -- - - ----- >
C-_—_—> Cr—"- - - -8 = -1
Time Time

Both concurrency and parallelism require controlled access to shared
resources.

We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).

Also, creating software independent of the physical setup, makes us
capable of deploying it on any platform.

DM519 Concurrent Programming 9

3.1 Modelling Concurrency

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

& o

'3

A

@

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling

Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

¢ o e

Possible execution sequences?

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling

Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

¢ o e

Possible execution sequences?
° X y

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling

Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

¢ o e

Possible execution sequences?
° X y
[] y ; x

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling

Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

¢ o e

Possible execution sequences?
° X y
[] y ; x
* x ||y

UNIVERSITY OF ISOUTHERN DENMARK

10

10

3.1 Modelling

Concurrency

® How do we model concurrency?

DM519 Concurrent Programming

X

¢ o

¢ @

Possible execution sequences?

° x;y
° y;x

=

UNIVERSITY OF ISOUTHERN DENMARK

Asynchronous
model of execution

10

10

3.1 Modelling Concurrency W%’

® How do we model concurrency?

e o

Possible execution sequences?
° X y
J y ; x
extHey— Asynchronous

model of execution

® Arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

DM519 Concurrent Programming 10

10

3.1 Modelling Concurrency

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

11

11

3.1 Modelling Concurrency

UNIVERSITY OF ISOUTHERN DENMARK

® How should we model process execution speed?

DM519 Concurrent Programming

11

11

3.1 Modelling Concurrency

UNIVERSITY OF ISOUTHERN DENMARK

® How should we model process execution speed?

a X
¢« o e
. N

b Y

® We choose to abstract away time:

DM519 Concurrent Programming

11

11

3.1 Modelling Concurrency

UNIVERSITY OF ISOUTHERN DENMARK

® How should we model process execution speed?

a X
¢« o e
. N

b Y

® We choose to abstract away time:

® Arbitrary speed!

DM519 Concurrent Programming

11

11

3.1 Modelling Concurrency

UNIVERSITY OF ISOUTHERN DENMARK

® How should we model process execution speed?

f“rﬂ\) —
¢ o e® @
¥ o o
b Y

® We choose to abstract away time:

@ Arbitrary speed!

-i we can say nothing of real-time properties

DM519 Concurrent Programming

11

11

3.1 Modelling Concurrency

UNIVERSITY OF ISOUTHERN DENMARK

® How should we model process execution speed?

/f-f‘rm\ JEE. S
¢« o€ @
——— ~ "

b Y

® We choose to abstract away time:

@ Arbitrary speed!

-i we can say nothing of real-time properties

scheduling policies, ...

+. independent of architecture, processor speed,

DM519 Concurrent Programming

11

11

Parallel Composition - Action Interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving = %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP) .

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving = %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP) .
CONVERSE = (think->talk->STOP).
| ICONVERSE ITCH = (ITCH || CONVERSE).

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP) .
CONVERSE = (think->talk->STOP).
| ICONVERSE ITCH = (ITCH || CONVERSE).

Possible traces as
a result of action
interleaving?

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

| | CONVERSE ITCH = (ITCH || CONVERSE) .

Possible traces as * scratch—~>think—~>talk

a result of action
interleaving?

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

| | CONVERSE ITCH = (ITCH || CONVERSE) .

Possible traces as * scratch—~>think—~>talk

a result of action think—2>scratch—~>talk

interleaving?

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving %'

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

| | CONVERSE ITCH = (ITCH || CONVERSE) .

Possible traces as * scratch—~>think—~>talk
* think—2>scratch—~>talk

esult of actio
a result of n * think—>talk—>scratch

interleaving?

DM519 Concurrent Programming

12

12

Parallel Composition - Action Interleaving

scratch

UNIVERSITY OF ISOUTHERN DENMARK

talk

think
ITCH m CONVERSE M

DM519 Concurrent Programming

13

13

Parallel Composition - Action Interleaving

scratch

UNIVERSITY OF ISOUTHERN DENMARK

talk

think
ITCH m CONVERSE M

Cartesian product?

DM519 Concurrent Programming

13

13

Parallel Composition - Action Interleaving %’

scratch

think talk
ITCH m CONVERSE M

scratch

Cartesian product?

CONVERSE_ITCH

talk think

DM519 Concurrent Programming 13

13

Parallel Composition - Action Interleaving %’

scratch

think talk
ITCH m CONVERSE M

scratch

Cartesian product?

CONVERSE_ITCH

/(O' \(Or'l) (0'2) (1'2) talk (1'1) thinl&l'o)

from ITCH rom CONVERSE

DM519 Concurrent Programming 13

13

Parallel Composition - Action Interleaving W%’

scratch
think talk
ITCH m CONVERSE M
2 states scratch

3 states

Cartesian product?

CONVERSE_ITCH

/(O' K(O('l) (0'2) (1'2) talk (1'1) thinl&l'o)

from ITCH rom CONVERSE 2 x 3 states

DM519 Concurrent Programming 13

13

Parallel Composition - Algebraic Laws

UNIVERSITY OF [SOUTHERN DENMARK

DM519 Concurrent Programming

14

14

Parallel Composition - Algebraic Laws

UNIVERSITY OF [SOUTHERN DENMARK

Commutative: (P||Q) = (Q||P)

DM519 Concurrent Programming

14

14

Parallel Composition - Algebraic Laws

UNIVERSITY OF |1SO

Commutative:
Associative:

(PI1Q) = (QI|P)

(P 1(Q|IR))

((P11Q) | IR)

DM519 Concurrent Programming

14

14

Parallel Composition - Algebraic Laws

UNIVERSITY OF |1SO

Commutative: (P||Q) = (Q||P)

Associative: (P 1(Q|IR)) ((P11Q) | IR)

(Pl 1Q] IR) .

DM519 Concurrent Programming 14

14

Parallel Composition - Algebraic Laws

UNIVERSITY OF |1SO

Commutative: (P||Q) = (Q||P)

Associative: (P 1(Q|IR)) ((P11Q) | IR)

(Pl 1Q] IR) .

Small example:

DM519 Concurrent Programming 14

14

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q] |P)

Associative: (P|] (Q] |IR)) P||Q) | |R)

((
(Pl 1Q] IR) .

Small example:

MALTHE = (climbTree->fall->MALTHE) .
OSKAR = (run->jump->OSKAR) .
| IMALTHE OSKAR = (MALTHE || OSKAR).

DM519 Concurrent Programming

14

14

Parallel Composition - Algebraic Laws

UNIVERSITY OF [SOUTHERN DENMARK

Commutative: (P||Q) = (Q||P)

Associative: (P 1(Q|IR)) ((P11Q) | IR)

(Pl 1Q] IR) .

Small example:

MALTHE = (climbTree->fall->MALTHE) .
OSKAR = (run->jump->OSKAR) .
| IMALTHE OSKAR = (MALTHE || OSKAR).

LTS? Traces? Number of states?

DM519 Concurrent Programming

14

14

Modelling Interaction - Shared Actions

MAKE]l = (make->ready->STOP).
USEl = (ready->use->STOP).
| IMAKE1 USEl1 = (MAKEl || USE1l).

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

15

15

Modelling Interaction - Shared Actions %'

MAKE]l = (make->ready->STOP).
USEl = (ready->use->STOP).
| IMAKE1 USEl1 = (MAKEl || USE1l).

@ Shared Actions:

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

DM519 Concurrent Programming

15

15

Modelling Interaction - Shared Actions %'

MAKE]l = (make->ready->STOP). MAKE1
USEl = (ready->use->STOP). synchronises
| IMAKE1 USE1 = (MAKEl || USE1). with USE1 when

ready.

@ Shared Actions:

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

DM519 Concurrent Programming 15

15

Modelling Interaction - Shared Actions %'

MAKE]l = (make->ready->STOP). MAKE1
USEl = (ready->use->STOP). synchronises
| IMAKE1 USE1 = (MAKEl || USE1). with USE1 when

ready.

LTS? Traces? Number of states?

@ Shared Actions:

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

DM519 Concurrent Programming 15

15

Modelling Interaction - Example

MAKEl = (make->ready->STOP).
USEl = (ready->use->STOP).
| IMAKE1 USEl1 = (MAKEl || USE1l).

read
Omts Orer
use use use
make ready
— —>

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

16

16

Modelling Interaction - Example W%’

MAKEl = (make->ready->STOP). 3 states
USEl = (ready->use->STOP).

3 states
| IMAKE1 USEl1 = (MAKEl || USE1l).

make read
O—0O—0O
readyl readyl lready
read
O Ot O
use use use
make r'eqdy
—> —>

DM519 Concurrent Programming

16

16

Modelling Interaction - Example

MAKEl = (make->ready->STOP).
USE1l = (ready->use->STOP).
| IMAKE1 USE1l = (MAKEl || USE1l).

read
Omss Orer (S
use use use
make ready
— —>

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

3 states
3 states

3 x 3 states?

16

16

Modelling Interaction - Example w%’

MAKE1l (make->ready->STOP) .

USEl = (ready->use->STOP). 3 states
3 states
| IMAKE1 USEl1 = (MAKEl || USEl).
make ready
O—0O0—0O
readyl readyl lready
read
<::>IEEEE’<::>-———11 <::> 3 x 3 states?
use use use
No...!
make ready
— —5

DM519 Concurrent Programming 16

16

Modelling Interaction - Example

MAKEl = (make->ready->STOP).
USE1l = (ready->use->STOP) .
| IMAKE1 USE1l = (MAKEl || USE1l).

QMQ _______________ -
\ v

________________ 4

use

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

3 states
3 states

17

17

Modelling Interaction - Example

MAKE1
USE1l

| IMAKE1 USE1

(make->ready->STOP) .
(ready->use->STOP) .

= (MAKEl || USEl).

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

3 states
3 states

4 states!

Interaction

the overall
behaviour !

may constrain

17

17

Example 0l
UNIVERSITY OF [SOUTHERN DENMARK

P
Q

(x -> y -> P).
(v -> x -> Q).

IR = (P |] Q).

DM519 Concurrent Programming 18

18

Example 0l
UNIVERSITY OF [SOUTHERN DENMARK

P
Q

(x -=>y -> P). 2 states
(y => % =>0Q). 2 states

IR = (P |] Q).

DM519 Concurrent Programming 18

18

Example 0l
UNIVERSITY OF [SOUTHERN DENMARK

P
Q

(x -=>y -> P). 2 states
(y => % =>0Q). 2 states

IR = (P |] Q).

LTS? Traces? Number of states?

DM519 Concurrent Programming 18

18

Example

P
Q

(x -> y -> P).
(v -> x -> Q).

IR = (P |] Q).

LTS? Traces?

Number of states?

(a -=>P | b ->0P).
(c => Q) + {a}.

1 1PQ = (P || Q).

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

2 states
2 states

18

18

Example 0l
UNIVERSITY OF ISOUTHERN DENMARK

P = (x ->y -> P). 2 states
Q = (¥ =>x->09). 2 states
|IR = (P || Q).

LTS? Traces? Number of states?
P=(a->P | b->0pP).
Q= (¢ -> Q) + {a}.
| 1PQ = (P || Q).

LTS? Traces?

DM519 Concurrent Programming 18

18

Modelling Interaction - Example

UNIVERSITY OF ISOUTHERN DENMARK

MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).

DM519 Concurrent Programming

19

19

Modelling Interaction - Example

UNIVERSITY OF ISOUTHERN DENMARK

MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).

LTS? Traces?

DM519 Concurrent Programming

19

19

Modelling Interaction - Example

UNIVERSITY OF ISOUTHERN DENMARK

MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).

LTS? Traces?

make ready

use use

DM519 Concurrent Programming

19

19

Modelling Interaction - Example

UNIVERSITY OF [SOUTHERN DENMARK

MAKER
USER

| IMAKER USER

(make->ready->MAKER) .
(ready->use->USER) .

(MAKER || USER).

LTS? Traces?

use use

Can we make sure the MAKER does not "get ahead of” the USER

DM519 Concurrent Programming

: and if so, how?

19

19

Modelling Interaction - Handshake %’

A handshake is an action acknowledged by another process:

MAKERvZ2 = (make->ready->used->MAKERV2) .
USERv2 = (ready->use->used->USERv2).
| IMAKER USERv2 = (MAKERv2 || USERv2).

DM519 Concurrent Programming 20

20

Modelling Interaction - Handshake %’

A handshake is an action acknowledged by another process:

MAKERvZ2 = (make->ready->used->MAKERV2) .
USERv2 = (ready->use->used->USERv2).
| IMAKER USERv2 = (MAKERv2Z || USERvV2) .
make ready use
—-
used

DM519 Concurrent Programming 20

20

Modelling Interaction - Multiple Processes %’

Multi-party synchronisation:

MAKE A =
MAKE B
ASSEMBLE

| | FACTORY =

(makeA->ready->used->MAKE A) .
(makeB->ready->used->MAKE B) .
(ready->assemble->used->ASSEMBLE) .

(MAKE A || MAKE B || ASSEMBLE).

DM519 Concurrent Programming

21

21

Modelling Interaction - Multiple Processes %’

Multi-party synchronisation:

MAKE A = (makeA->ready->used->MAKE A) .
MAKE B = (makeB->ready->used->MAKE B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE) .
| IFACTORY = (MAKE A || MAKE B || ASSEMBLE).
makeA
—p—
makeB makeA ready assemble

> makeB
used

DM519 Concurrent Programming 21

21

Composite Processes W%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| | MAKERS (MAKE A || MAKE B).

| |FACTORY = (MAKERS || ASSEMBLE) .

DM519 Concurrent Programming 22

22

Composite Processes w%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
@ substitution of
def'n of MAKERS

| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE) .

DM519 Concurrent Programming 22

22

Composite Processes W%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
! | substitution of

def'n of MAKERS
| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE).

Further simplification?

DM519 Concurrent Programming 22

22

Composite Processes w%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
! | substitution of

def'n of MAKERS
| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE).

Further simplification? @ associativity!

| | FACTORY

(MAKE A || MAKE B || ASSEMBLE).

DM519 Concurrent Programming 22

22

P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.

DM519 Concurrent Programming

23

23

Process Labelling W%’

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

DM519 Concurrent Programming

23

23

P rocess La be I I i n g UNIVERSITY OF ﬁ:ERN DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).

DM519 Concurrent Programming

23

23

Process Labelling W%’

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

? (a:
SWITCH = (on->o0ff->SWITCH) . LTS? (a:SWITCH)

DM519 Concurrent Programming

23

23

P rocess La be I I i n g UNIVERSITY OF ﬁ:ERN DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

? (a:
SWITCH = (on->o0ff->SWITCH) . LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off

DM519 Concurrent Programming

23

23

P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off

DM519 Concurrent Programming

23

23

P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off

b.on

b.off

DM519 Concurrent Programming

23

23

Process Labelling w%’

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH © a.0n

a.off

b.on

b.off a.off

DM519 Concurrent Programming 23

23

Process Labelling

Create an array of instances of the switch process:

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

24

24

Process Labelling w%’

Create an array of instances of the switch process:

| | SWITCHES (N=3) = (forall[i:1l..N] s[i] :SWITCH).

DM519 Concurrent Programming 24

24

Process Labelling w%’

Create an array of instances of the switch process:

| | SWITCHES (N=3)

(forall[i:1..N] s[i] :SWITCH).

| |SWITCHES (N=3) = (s[1:1..N]:SWITCH).

DM519 Concurrent Programming 24

24

Process Labelling By A Set Of Prefix Labels

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

DM519 Concurrent Programming

25

25

Process Labelling By A Set Of Prefix Labels

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

DM519 Concurrent Programming 25

25

Process Labelling By A Set Of Prefix Labels %’

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER = (acquire->use->release->USER) .

DM519 Concurrent Programming 25

25

Process Labelling By A Set Of Prefix Labels %'

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER

(acquire->use->release->USER) .

RESOURCE

(acquire->release->RESOURCE) .

DM519 Concurrent Programming

25

25

Process Labelling By A Set Of Prefix Labels %’

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER

(acquire->use->release->USER) .

RESOURCE

(acquire->release->RESOURCE) .

| IRESOURCE SHARE

(2:USER || b:USER || {a,b}Q)RESOURCE).

DM519 Concurrent Programming 25

25

Process Prefix Labels For Shared Resourceswmé;mDENMARK

RESOURCE (acquire->release->RESOURCE) .

USER

(acquire->use->release->USER) .

| IRESOURCE SHARE

(2:USER || b:USER || {a,b}::RESOURCE) .

DM519 Concurrent Programming 26

26

Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE

(acquire->release->RESOURCE) .

USER

(acquire->use->release->USER) .

| IRESOURCE SHARE

(2 :USER

b :USER

{a,b}: :RESOURCE) .

a.acquire a.use

o @

a.release

DM519 Concurrent Programming

26

26

Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
a.acquire a.use b.acquire b.use
a:USER@ b:USER i j
a.release b.release

DM519 Concurrent Programming 26

26

Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
b.acquire
a.acquire a.use b.acquire b.use a.acquire
a:USER @ b:USER @ {a,b}::RESOURCE ©

a.release
a.release b.release b.release

DM519 Concurrent Programming

26

26

Process Prefix Labels For Shared Resourcesuwwt&;mm

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| IRESOURCE _SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .

b.acquire
a.acquire a.use b.acquire b.use a.acquire

a.release

a.release b.release b.release

How does the model
ensure that the user that
acquires the resource is
the one to release it?

DM519 Concurrent Programming 26

26

Process Prefix Labels For Shared Resourceswmté:ww

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
b.acquire
a.acquire a.use b.acquire b.use a.acquire
a:USER @ b:USER @ {a,b}::RESOURCE ©

a.release
a.release b.release b.release

a.acquire

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE_SHARE

b.release

a.release

DM519 Concurrent Programming 26

26

Example

X = (x -> STOP).

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

27

27

Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

| |SYS 2 =

{a,b}: :X.

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

27

27

Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces? Number of states?

| |SYS 2

{a,b}: :X.

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

27

27

Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.

DM519 Concurrent Programming

SYS_1

UNIVERSITY OF [SOUTHERN DENMARK

27

27

Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.

LTS? Traces?

DM519 Concurrent Programming

Number of states?

UNIVERSITY OF [SOUTHERN DENMARK

27

27

Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.

LTS? Traces?

DM519 Concurrent Programming

Number of states?

UNIVERSITY OF [SOUTHERN DENMARK

SYS 1

{a,b}x

27

27

Example

X = (x -> STOP).

|1SYS 1 =

{a,b}:X.

LTS? Traces?

Number of states?
{a...}:X creates one process per prefix

| |SYS 2 =

{a,b}: :X.

LTS? Traces?

Number of states?

UNIVERSITY OF ISOUTHERN DENMARK

SYS 1

{a,b}x

{a...}::X creates one process with all prefixes

DM519 Concurrent Programming

27

27

Action Relabelling %'

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

DM519 Concurrent Programming

28

28

Action Relabellin %
g UNIVERSITY OF ISOUTHERN DENMARK

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

DM519 Concurrent Programming

28

28

Action Relabellin %
g UNIVERSITY OF ISOUTHERN DENMARK

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

CLIENT = (call->wait->continue->CLIENT) .

DM519 Concurrent Programming

28

28

Action Relabelling %'

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

CLIENT = (call->wait->continue->CLIENT) .

SERVER

(request->service->reply->SERVER) .

DM519 Concurrent Programming

28

28

Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER

(request->service->reply->SERVER) .

DM519 Concurrent Programming

29

29

Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

DM519 Concurrent Programming

29

29

Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C (CLIENT /{reply/wait}).

S

(SERVER /{call/request}).

DM519 Concurrent Programming

29

29

Action Relabelling N %’

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

DM519 Concurrent Programming 29

29

ACti o n Re I a be I I i n g UNIVERSITY OF &:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply
®<

continue

DM519 Concurrent Programming 29

29

ACti o n Re I a be I I i n g UNIVERSITY OF E:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply S call service

continue reply

DM519 Concurrent Programming 29

29

ACti o n Re I a be I I i n g UNIVERSITY OF &:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply S call service

continue reply
call service reply
@,
continue

DM519 Concurrent Programming 29

29

Action Relabelling - Prefix Labels %’

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

DM519 Concurrent Programming 30

30

Action Relabelling - Prefix Labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

SERVERvZ2 = (accept.request

->service->accept.reply->SERVERV2) .

DM519 Concurrent Programming

30

UNIVERSITY OF [SOUTHERN DENMARK

30

Action Relabelling - Prefix Labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

CLIENTvZ2

SERVERvZ2 = (accept.request

->service->accept.reply->SERVERV2) .

(call.request

->call.reply->continue->CLIENTvZ2) .

DM519 Concurrent Programming

30

UNIVERSITY OF [SOUTHERN DENMARK

30

Action Relabelling - Prefix Labels %’

An alternative formulation of the client server system is described

below using qualified or prefixed labels:

SERVERvZ2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTvZ2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERvV2)

/{call/accept}.

DM519 Concurrent Programming

30

30

Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

DM519 Concurrent Programming

31

31

Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
\ {use}.

DM519 Concurrent Programming 31

31

Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
\ {use}.

N

_4—
release

DM519 Concurrent Programming 31

31

Action Hiding - Abstraction To Reduce Complexity

NIVERSITY OF JTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be
exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

DM519 Concurrent Programming 32

32

Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be

exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

USER = (acquire->use->release->USER)
@{acquire,release}.

DM519 Concurrent Programming

32

32

Action Hiding - Abstraction To Reduce Complexit

UNIVERSITY OF WOUTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be

exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

USER = (acquire->use->release->USER)
@{acquire,release}.

N

{

_q—
release

DM519 Concurrent Programming

32

32

Action Hiding

The following definitions are equivalent:

UNIVERSITY OF [SOUTHERN DENMARK

USER

USER = (acquire->use->release->USER)
\ {use}.

(acquire->use->release->USER)

@{acquire,release}.

acquire tau

DM519 Concurrent Programming

_‘ﬁ
release

33

33

Action Hiding

The following definitions are equivalent:

UNIVERSITY OF [SOUTHERN DENMARK

USER

USER = (acquire->use->release->USER)
\ {use}.

(acquire->use->release->USER)

@{acquire,release}.

acquire tau

DM519 Concurrent Programming

_‘ﬁ
release

Minimisation removes hidden
tau actions to produce an
LTS with equivalent
observable behaviour.

acquire
Q

release

33

33

Structure Diagrams

DM519 Concurrent Programming

Process P with
alphabet {a,b}.

UNIVERSITY OF ISOUTHERN DENMARK

34

34

Structure Diagrams

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

Process P with
alphabet {a,b}.

Parallel Composition

(PlIQ)

34

34

Structure Diagrams

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

Process P with
alphabet {a,b}.

Parallel Composition

(PlIQ)

34

34

Structure Diagrams %’

P Process P with
alphabet {a,b}.
P i 3 Q Parallel Composition
X O—= PR/ {m/am/b }

DM519 Concurrent Programming 34

34

Structure Diagrams %’

Process P with
alphabet {a,b}.

Parallel Composition
X O—X PIQ)/ {m/am/b }

DM519 Concurrent Programming 34

34

Structure Diagrams %’

Process P with
alphabet {a,b}.

Parallel Composition
X O—=% (PIQ) / {m/am/b,c/d}

DM519 Concurrent Programming 34

34

Structure Diagrams %’

P Process P with
alphabet {a,b}.
m
P i c 3 Q Parallel Composition
X O—=% (PIQ) / {m/am/b,c/d}

DM519 Concurrent Programming 34

34

Structure Diagrams

)

DM519 Concurrent Programming

Process P with
alphabet {a,b}.

Parallel Composition
(PI1Q) / {m/a,m/b,c/d}

Composite process
[1S = (X|Y) @ {x.y}

34

34

Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

range T = 0..3
BUFF (in[i:T]->out[i] ->BUFF) .

DM519 Concurrent Programming

35

35

Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

range T = 0..3
BUF'F

(in[1:T]->out[1] ->BUFF) .

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:

parallel composition,
relabelling and hiding.

DM519 Concurrent Programming

in

TWOBUFF

a:BUFF

)in OUtCJ () in OUtC

b:BUFF
a.out

3

out

—

35

35

Structure Diagrams

UNIVERSITY OF [SOUTHERN DENMARK

range T = 0..3
BUF'F

(in[1:T]->out[1] ->BUFF) .

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:

parallel composition,
relabelling and hiding.

in

TWOBUFF

a:BUFF

Din OUtC) () in OUt(

b:BUFF
a.out

out

—

| | TWOBUF =

DM519 Concurrent Programming

35

35

Structure Diagrams %'

range T = 0..3
BUFF (in[i:T]->out[i]->BUFF) .

We use structure diagrams

to capture the structure of TWOBUFF
a model expressed by the | a:BUFF 2oyt | P:BUFF
. . IN ;
static combinators: O——0in outO Oin Oth_Oig

parallel composition,
relabelling and hiding.

| | TNHOBUF

(a:BUFF || b:BUFF)
/{in/a.in, a.out/b.in, out/b.out}
@{in,out}.

DM519 Concurrent Programming 35

35

Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT
SERVER

(call->wait->continue->CLIENT) .
(request->service->reply->SERVER) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.

DM519 Concurrent Programming

36

36

Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT
SERVER

(call->wait->continue->CLIENT) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.

(request->service->reply->SERVER) .

Structure diagram for CLIENT SERVER ?

DM519 Concurrent Programming

36

36

Structure Diagrams %’

CLIENT
SERVER

(call->wait->continue->CLIENT) .
(request->service->reply->SERVER) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.

Structure diagram for CLIENT SERVER ?

CLIENT call call request SERVER

)

O continue wait reply reply service (

DM519 Concurrent Programming

36

36

Stru Ctu re D i ag ra m S UNIVERSITY OF ﬁ:ERN DENMARK

SERVERvVZ2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

DM519 Concurrent Programming

37

37

Stru Ctu re D i ag ra ms UNIVERSITY OF ﬁ:tm DENMARK

SERVERvVZ2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

Structure diagram for CLIENT SERVERv2 ?

DM519 Concurrent Programming

37

37

Structure Diagrams %'

SERVERv2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

Structure diagram for CLIENT SERVERv2 ?

CLIENTV2 cal o—<@ Laccept SERVERV?2

O continue service O

Simply use the shared prefix.

DM519 Concurrent Programming 37

37

Structure Diagrams - Resource Sharing

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

38

38

Structure Diagrams - Resource Sharing

UNIVERSITY OF ISOUTHERN DENMARK

RESOURCE = (acquire->release->RESOURCE) .

DM519 Concurrent Programming

38

38

Structure Diagrams - Resource Sharing %’

RESOURCE
USER

(acquire->release->RESOURCE) .
(printer.acquire->use->printer.release->USER) .

DM519 Concurrent Programming 38

38

Structure Diagrams - Resource Sharing %’

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use->printer.release->USER).

| | PRINTER SHARE =
(2:USER || b:USER || {a,b}::printer:RESOURCE) .

DM519 Concurrent Programming 38

38

Structure Diagrams - Resource Sharing %’

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use->printer.release->USER).

| | PRINTER SHARE =
(2:USER || b:USER || {a,b}::printer:RESOURCE) .

Shared resources are shown as "rounded rectangles”:

PRINTER_SHARE
a:USER —
printer (
printer:
RESOURCE
(Hacquire
b:USER ’yrelease
printer ¢

DM519 Concurrent Programming 38

38

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

39

39

ThreadDemo Model

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

40

40

ThreadDemo Model W%’

THREAD = OFF,
OFF = (toggle->ON

DM519 Concurrent Programming 40

40

ThreadDemo Model

UNIVERSITY OF ISOUTHERN DENMARK

OFF =

ON

THREAD

= OFF,

(toggle->ON
| abort->STOP) ,

(toggle->OFF
| output->0ON
| abort->STOP) .

DM519 Concurrent Programming

40

40

ThreadDemo Model

UNIVERSITY OF ISOUTHERN DENMARK

THREAD = OFF,

OFF = (toggle->ON
| abort->STOP) ,

ON = (toggle->OFF
| output->ON
| abort->STOP) .

| ITHREAD DEMO =
(a:THREAD || b:THREAD)

/{stop/{a,b}.abort}.

DM519 Concurrent Programming

40

40

ThreadDemo Model

UNIVERSITY OF ISOUTHERN DENMARK

THREAD = OFF,

OFF = (toggle->ON
| abort->STOP) ,

ON = (toggle->OFF
| output->0ON
| abort->STOP) .

| |THREAD DEMO =
(a:THREAD || b:THREAD)
/{stop/{a,b}.abort}.

DM519 Concurrent Programming

40

40

ThreadDemo Model

UNIVERSITY OF ISOUTHERN DENMARK

THREAD = OFF,

OFF = (toggle->ON
| abort->STOP) ,

ON = (toggle->OFF
| output->0ON
| abort->STOP) .

| |THREAD DEMO =
(a:THREAD || b:THREAD)
/{stop/{a,b}.abort}.

DM519 Concurrent Programming

Interpret:

toggle, abort
as inputs;

output
as output

40

40

ThreadDemo Model

UNIVERSITY OF [SOUTHERN DENMARK

OFF =

ON =

THREAD

= OFF,
(toggle->ON

| abort->STOP) ,

(toggle->OFF
| output->ON

| abort->STOP) .

| ITHREAD DEMO =

(a:THREAD | |

/ toggle

togzle

stop

stop

output

b : THREAD)
/{stop/{a,b}.abort}.

Interpret:

a.toggle

THREAD DEMO

a.output

stop

a:T O

J

C

) b: T

bﬂogﬁe

.output

\J

DM519 Concurrent Programming

toggle, abort
as inputs;

output
as output

40

40

ThreadDemo Code: MyThread

b

THREAD DEMO

}

try {

}

b}

public void toggle() {

private void output () {
System.out.println(getName ()+"“: output”) ;

public void run() {

class MyThread extends Thread ({
private boolean on;

MyThread (String name) { super (name),; this.on = false; }

on

public void abort() { this.interrupt(), }

while (!interrupted()) {
if (on) output();
sleep (500) ;

} catch(Int’Exc’) {}
System.out.println(“Done!”) ;

aT O STP O b:T

= lon; }

THREAD = OFF,

OFF = (toggle->ON
|abort->STOP),

ON = (toggle->OFF
| output->0ON
|abort->STOP) .

| | THREAD DEMO =
(a:THREAD || b:THREAD)

DM519 Concurrent Programming

/{stop/{a,b} .abort}.

41

41

ThreadDemo Code: ThreadDemo

b

}

class ThreadDemo {

THREAD DEMO

aT O S*["“ O b:T

public static void main(String[] args) {

}

MyThread a = new MyThread(“a”);
MyThread b = new MyThread(“b”) ;
a.start(); b.start();
while (true) {
switch (readChar()) {
case ‘a’: a.toggle();

THREAD
OFF =

ON

= OFF,

(toggle->ON
|abort->STOP) ,

(toggle->0FF
|output->0N
|abort->STOP) .

| | THREAD DEMO =

(a:THREAD || b:THREAD)
/{stop/{a,b} .abort}.

break;
case ‘b’: b.toggle()
break;
case ‘i1’: stop(a,b);
return;
}
}
private stop (MyThread a, MyThread b) {
a.abort() ;
b.abort () ;

DM519 Concurrent Programming

42

42

Summary

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

43

43

Summary

® Concepts

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

43

43

Summary

® Concepts

® Concurrent processes and process interaction

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

43

43

Summary

® Concepts

® Concurrent processes and process interaction

® Models

DM519 Concurrent Programming

UNIVERSITY OF [SOUTHERN DENMARK

43

43

S u m m a ry UNIVERSITY OF KERN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF thRN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).

®Parallel composition as a finite state process with action interleaving.

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF thRN DENMARK
® Concepts
® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.

®Process interaction by shared actions.

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF KERN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF EERN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

® Structure diagrams

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF EERN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

® Structure diagrams

@®Practice

DM519 Concurrent Programming 43

43

S u m m a ry UNIVERSITY OF EERN DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

® Structure diagrams

@®Practice

® Multiple threads in Java.

DM519 Concurrent Programming 43

43

