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Repetition (Concepts, Models, and Practice) w%’

® Concepts:

® We adopt a model-based approach for the design and
construction of concurrent programs

® Safe model => safe program

&® Models:

® We use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

®Practice:

® We use Java for constructing concurrent programs
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Model = simplified representation of the real world

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

® Described textually as Finite State Processes
(FSP)i EngineOff

EngineOn

(engineOn -> EngineOn),
(engineOff -> EngineOff
| speed -> EngineOn) .
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Finite State Processes (FSP):
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‘ (x ->P)
(when (...) x -> P)
P|P
P+{.}
X

// termination
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// guard
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¢ process parameters
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Repetition (Finite State Processes; FSP) N %’ NNNNN

Finite State Processes (FSP):

P : STOP // termination
: (x -> P) // action prefix

(when (...) x -> P) // guard
P|P // choice
P+ ..} // alphabet extension
X // process variable

¢ action indexing x[i:1.N]->P or x[i]->P

¢ process parameters P(N=3) = ..

¢ constant definitions const N = 3

¢ range definitions range R = 0..N

Which constructions do not add expressive power?
(and are thus only "syntactic sugar").
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Subclassing java.lang.Thread:

class MyThread extends Thread {
public void run() {

//

}
} Thread t = new MyThread() ;

t.start () ;
//

Implementing java.lang.Runnable:

class MyRun implements Runnable {
public void run() {

//

}
} Thread t = new Thread(new MyRun()) ;

t.start () ;
//
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ConcepTs: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes
interleaving
inferaction - shared actions

process labelling, and action relabelling and hiding
structure diagrams

Practice: Multithreaded Java programs
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Definition: Parallelism %’

®Parallelism (aka. Real/True Concurrent Execution)

®Physically simultaneous processing

® Involves multiple processing elements (PEs)

and/or independent device operations

Anesssss——— - >
B | —— - -

C-———_—>
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® Concurrency (aka. Pseudo-Concurrent Execution)

® | ogically simultaneous processing

® Does not imply multiple processing elements (PEs)

® Requires interleaved execution on a single PE

Ammm - - -----—---- >

B - .- ----- >

Cr .- - - - -
Time
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Parallelism vs Concurrency %’

®Parallelism @ Concurrency
Y ——— > AN —— - -----—-—--- =
B- -=> B -- - - ----- >
C-_—_—> Cr—"- - - -8 = -1
Time Time
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Parallelism vs Concurrency %’

®Parallelism @ Concurrency
Y ——— > AN —— - -----—-—--- =
B- -=> B -- - - ----- >
C-_—_—> Cr—"- - - -8 = -1
Time Time

Both concurrency and parallelism require controlled access to shared
resources.

We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).

Also, creating software independent of the physical setup, makes us
capable of deploying it on any platform.
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3.1 Modelling Concurrency W%’

® How do we model concurrency?

e o

Possible execution sequences?
° X y
J y ; x
extHey— Asynchronous

model of execution

® Arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)
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® How should we model process execution speed?

/f-f‘rm\ JEE. S
¢« o€ @
——— ~ "

b Y

® We choose to abstract away time:

@ Arbitrary speed!

-i we can say nothing of real-time properties

scheduling policies, ...

+. independent of architecture, processor speed,
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(think->talk->STOP) .
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If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

| | CONVERSE ITCH = (ITCH || CONVERSE) .

Possible traces as * scratch—~>think—~>talk
* think—2>scratch—~>talk

esult of actio
a result of n * think—>talk—>scratch

interleaving?
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Parallel Composition - Action Interleaving W%’

scratch
think talk
ITCH m CONVERSE M
2 states scratch

3 states

Cartesian product?

CONVERSE_ITCH

/(O' K(O('l) (0'2) (1'2) talk (1'1) thinl&l'o)

from ITCH rom CONVERSE 2 x 3 states
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Commutative:
Associative:

(PI1Q) = (QI|P)

(P 1(Q|IR))

((P11Q) | IR)
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Commutative: (P||Q) = (Q] |P)

Associative: (P|] (Q] |IR)) P||Q) | |R)

((
(Pl 1Q] IR) .

Small example:

MALTHE = (climbTree->fall->MALTHE) .
OSKAR = (run->jump->OSKAR) .
| IMALTHE OSKAR = (MALTHE || OSKAR).
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Commutative: (P||Q) = (Q||P)

Associative: (P 1(Q|IR)) ((P11Q) | IR)

(Pl 1Q] IR) .

Small example:

MALTHE = (climbTree->fall->MALTHE) .
OSKAR = (run->jump->OSKAR) .
| IMALTHE OSKAR = (MALTHE || OSKAR).

LTS? Traces? Number of states?
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Modelling Interaction - Shared Actions

MAKE]l = (make->ready->STOP).
USEl = (ready->use->STOP).
| IMAKE1 USEl1 = (MAKEl || USE1l).
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| IMAKE1 USEl1 = (MAKEl || USE1l).

@ Shared Actions:

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.
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action must be executed at the same time by all processes
that participate in the shared action.
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Modelling Interaction - Example

MAKEl = (make->ready->STOP).
USEl = (ready->use->STOP).
| IMAKE1 USEl1 = (MAKEl || USE1l).

read
Omts Orer
use use use
make ready
— —>
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Modelling Interaction - Example W%’

MAKEl = (make->ready->STOP). 3 states
USEl = (ready->use->STOP).

3 states
| IMAKE1 USEl1 = (MAKEl || USE1l).

make read
O—0O—0O
readyl readyl lready
read
O Ot O
use use use
make r'eqdy
—> —>
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Modelling Interaction - Example w%’

MAKE1l (make->ready->STOP) .

USEl = (ready->use->STOP). 3 states
3 states
| IMAKE1 USEl1 = (MAKEl || USEl).
make ready
O—0O0—0O
readyl readyl lready
read
<::>IEEEE’<::>-———11 <::> 3 x 3 states?
use use use
No...!
make ready
— —5
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Modelling Interaction - Example

MAKEl = (make->ready->STOP).
USE1l = (ready->use->STOP) .
| IMAKE1 USE1l = (MAKEl || USE1l).

QMQ _______________ -
\ v

________________ 4

use

DM519 Concurrent Programming

UNIVERSITY OF ISOUTHERN DENMARK

3 states
3 states

17

17



Modelling Interaction - Example

MAKE1
USE1l

| IMAKE1 USE1

(make->ready->STOP) .
(ready->use->STOP) .

= (MAKEl || USEl).

DM519 Concurrent Programming
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Example 0l
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P
Q

(x -> y -> P).
(v -> x -> Q).

IR = (P |] Q).
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Example

P
Q

(x -> y -> P).
(v -> x -> Q).

IR = (P |] Q).

LTS? Traces?

Number of states?

(a -=>P | b ->0P).
(c => Q) + {a}.

1 1PQ = (P || Q).
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Example 0l
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P = (x ->y -> P). 2 states
Q = (¥ =>x->09). 2 states
|IR = (P || Q).

LTS? Traces? Number of states?
P=(a->P | b->0pP).
Q= (¢ -> Q) + {a}.
| 1PQ = (P || Q).

LTS? Traces?
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MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).
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MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).

LTS? Traces?

make ready

use use
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Modelling Interaction - Example

UNIVERSITY OF [SOUTHERN DENMARK

MAKER
USER

| IMAKER USER

(make->ready->MAKER) .
(ready->use->USER) .

(MAKER || USER).

LTS? Traces?

use use

Can we make sure the MAKER does not "get ahead of” the USER

DM519 Concurrent Programming
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Modelling Interaction - Handshake %’

A handshake is an action acknowledged by another process:

MAKERvZ2 = (make->ready->used->MAKERV2) .
USERv2 = (ready->use->used->USERv2).
| IMAKER USERv2 = (MAKERv2 || USERv2).
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Modelling Interaction - Handshake %’

A handshake is an action acknowledged by another process:

MAKERvZ2 = (make->ready->used->MAKERV2) .
USERv2 = (ready->use->used->USERv2).
| IMAKER USERv2 = (MAKERv2Z || USERvV2) .
make ready use
—-
used
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Modelling Interaction - Multiple Processes %’

Multi-party synchronisation:

MAKE A =
MAKE B
ASSEMBLE

| | FACTORY =

(makeA->ready->used->MAKE A) .
(makeB->ready->used->MAKE B) .
(ready->assemble->used->ASSEMBLE) .

(MAKE A || MAKE B || ASSEMBLE).

DM519 Concurrent Programming
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Modelling Interaction - Multiple Processes %’

Multi-party synchronisation:

MAKE A = (makeA->ready->used->MAKE A) .
MAKE B = (makeB->ready->used->MAKE B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE) .
| IFACTORY = (MAKE A || MAKE B || ASSEMBLE).
makeA
—p—
makeB makeA ready assemble

> makeB
used
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Composite Processes W%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| | MAKERS (MAKE A || MAKE B).

| |FACTORY = (MAKERS || ASSEMBLE) .
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Composite Processes w%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
@ substitution of
def'n of MAKERS

| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE) .
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Composite Processes W%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
! | substitution of

def'n of MAKERS
| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE).

Further simplification?
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Composite Processes w%’

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
! | substitution of

def'n of MAKERS
| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE).

Further simplification? @ associativity!

| | FACTORY

(MAKE A || MAKE B || ASSEMBLE).
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P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.
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Process Labelling W%’

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
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a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
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Process Labelling W%’
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Two instances of a switch process:

? (a:
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P rocess La be I I i n g UNIVERSITY OF ﬁ:ERN DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

? (a:
SWITCH = (on->o0ff->SWITCH) . LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off
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P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off
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P rocess La be I I i n g UNIVERSITY OF ﬁ:tm DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH ©

a.off

b.on

b.off
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Process Labelling w%’

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->0ff->SWITCH).
| |ITWO SWITCH = (a:SWITCH || b:SWITCH).

LTS? (a:SWITCH)

a.on

a:SWITCH © a.0n

a.off

b.on

b.off a.off
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Process Labelling

Create an array of instances of the switch process:
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Process Labelling w%’

Create an array of instances of the switch process:

| | SWITCHES (N=3) = (forall[i:1l..N] s[i] :SWITCH).
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Process Labelling w%’

Create an array of instances of the switch process:

| | SWITCHES (N=3)

(forall[i:1..N] s[i] :SWITCH).

| |SWITCHES (N=3) = (s[1:1..N]:SWITCH).
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Process Labelling By A Set Of Prefix Labels

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).
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{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:
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Process Labelling By A Set Of Prefix Labels %’

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER = (acquire->use->release->USER) .
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Process Labelling By A Set Of Prefix Labels %'

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER

(acquire->use->release->USER) .

RESOURCE

(acquire->release->RESOURCE) .
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Process Labelling By A Set Of Prefix Labels %’

{a;,..,a.}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER

(acquire->use->release->USER) .

RESOURCE

(acquire->release->RESOURCE) .

| IRESOURCE SHARE

(2:USER || b:USER || {a,b}Q)RESOURCE).
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Process Prefix Labels For Shared Resourceswmé;mDENMARK

RESOURCE (acquire->release->RESOURCE) .

USER

(acquire->use->release->USER) .

| IRESOURCE SHARE

(2:USER || b:USER || {a,b}::RESOURCE) .
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Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE

(acquire->release->RESOURCE) .

USER

(acquire->use->release->USER) .

| IRESOURCE SHARE

(2 :USER

b :USER

{a,b}: :RESOURCE) .

a.acquire a.use

o @

a.release
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Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
a.acquire a.use b.acquire b.use
a:USER@ b:USER i j
a.release b.release
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Process Prefix Labels For Shared Resourceswmmt&;mDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
b.acquire
a.acquire a.use b.acquire b.use a.acquire
a:USER @ b:USER @ {a,b}::RESOURCE ©

a.release
a.release b.release b.release
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Process Prefix Labels For Shared Resourcesuwwt&;mm

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| IRESOURCE _SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .

b.acquire
a.acquire a.use b.acquire b.use a.acquire

a.release

a.release b.release b.release

How does the model
ensure that the user that
acquires the resource is
the one to release it?
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Process Prefix Labels For Shared Resourceswmté:ww

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER) .
| |IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
b.acquire
a.acquire a.use b.acquire b.use a.acquire
a:USER @ b:USER @ {a,b}::RESOURCE ©

a.release
a.release b.release b.release

a.acquire

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE_SHARE

b.release

a.release
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Example

X = (x -> STOP).
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Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

| |SYS 2 =

{a,b}: :X.
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Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces? Number of states?

| |SYS 2

{a,b}: :X.
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Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.
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Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.

LTS? Traces?
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Example

X = (x -> STOP).

| 1SYS 1

{a,b}:X.

LTS? Traces?

Number of states?

| |SYS 2

{a,b}: :X.

LTS? Traces?
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Number of states?
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Example

X = (x -> STOP).

|1SYS 1 =

{a,b}:X.

LTS? Traces?

Number of states?
{a...}:X creates one process per prefix

| |SYS 2 =

{a,b}: :X.

LTS? Traces?

Number of states?

UNIVERSITY OF ISOUTHERN DENMARK

SYS 1

{a,b}x

{a...}::X creates one process with all prefixes
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Action Relabelling %'

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.
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Action Relabellin %
g UNIVERSITY OF ISOUTHERN DENMARK

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:
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Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

CLIENT = (call->wait->continue->CLIENT) .
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Action Relabelling %'

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, ... newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

CLIENT = (call->wait->continue->CLIENT) .

SERVER

(request->service->reply->SERVER) .
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Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER

(request->service->reply->SERVER) .
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Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).
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Action Relabelling

UNIVERSITY OF ISOUTHERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C (CLIENT /{reply/wait}).

S

(SERVER /{call/request}).
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Action Relabelling N %’

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).
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ACti o n Re I a be I I i n g UNIVERSITY OF &:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply
®<

continue
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CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply S call service

continue reply
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ACti o n Re I a be I I i n g UNIVERSITY OF &:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT) .

SERVER = (request->service->reply->SERVER) .

C

(CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

1C_S = (C || S).

C call reply S call service

continue reply
call service reply
@,
continue
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Action Relabelling - Prefix Labels %’

An alternative formulation of the client server system is described
below using qualified or prefixed labels:
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An alternative formulation of the client server system is described
below using qualified or prefixed labels:

SERVERvZ2 = (accept.request

->service->accept.reply->SERVERV2) .
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Action Relabelling - Prefix Labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

CLIENTvZ2

SERVERvZ2 = (accept.request

->service->accept.reply->SERVERV2) .

(call.request

->call.reply->continue->CLIENTvZ2) .
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Action Relabelling - Prefix Labels %’

An alternative formulation of the client server system is described

below using qualified or prefixed labels:

SERVERvZ2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTvZ2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERvV2)

/{call/accept}.
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Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.
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Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
\ {use}.
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Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action names ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
\ {use}.

N

_4—
release
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Action Hiding - Abstraction To Reduce Complexity

NIVERSITY OF JTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be
exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.
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Action Hiding - Abstraction To Reduce Complexit

NIVERSITY OF WOUTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be

exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

USER = (acquire->use->release->USER)
@{acquire,release}.

DM519 Concurrent Programming

32

32



Action Hiding - Abstraction To Reduce Complexit

UNIVERSITY OF WOUTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be

exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

USER = (acquire->use->release->USER)
@{acquire,release}.

N

{

_q—
release
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Action Hiding

The following definitions are equivalent:

UNIVERSITY OF [SOUTHERN DENMARK

USER

USER = (acquire->use->release->USER)
\ {use}.

(acquire->use->release->USER)

@{acquire,release}.

acquire tau
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Action Hiding

The following definitions are equivalent:

UNIVERSITY OF [SOUTHERN DENMARK

USER

USER = (acquire->use->release->USER)
\ {use}.

(acquire->use->release->USER)

@{acquire,release}.

acquire tau

DM519 Concurrent Programming

_‘ﬁ
release

Minimisation removes hidden
tau actions to produce an
LTS with equivalent
observable behaviour.

acquire
Q

release
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Structure Diagrams %’

P Process P with
alphabet {a,b}.
P i 3 Q Parallel Composition
X O—= PR/ {m/am/b  }
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Structure Diagrams %’

Process P with
alphabet {a,b}.

Parallel Composition
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Structure Diagrams %’

P Process P with
alphabet {a,b}.
m
P i c 3 Q Parallel Composition
X O—=% (PIQ) / {m/am/b,c/d}

DM519 Concurrent Programming 34

34



Structure Diagrams

)

DM519 Concurrent Programming

Process P with
alphabet {a,b}.

Parallel Composition
(PI1Q) / {m/a,m/b,c/d}

Composite process
[1S = (X|Y) @ {x.y}
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Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

range T = 0..3
BUFF (in[i:T]->out[i] ->BUFF) .
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Structure Diagrams

UNIVERSITY OF ISOUTHERN DENMARK

range T = 0..3
BUF'F

(in[1:T]->out[1] ->BUFF) .

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:

parallel composition,
relabelling and hiding.
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Structure Diagrams

UNIVERSITY OF [SOUTHERN DENMARK

range T = 0..3
BUF'F

(in[1:T]->out[1] ->BUFF) .

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:

parallel composition,
relabelling and hiding.

in

TWOBUFF

a:BUFF

Din OUtC) () in OUt(

b:BUFF
a.out

out

—

| | TWOBUF =
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Structure Diagrams %'

range T = 0..3
BUFF (in[i:T]->out[i]->BUFF) .

We use structure diagrams

to capture the structure of TWOBUFF
a model expressed by the | a:BUFF 2oyt | P:BUFF
. . IN ;
static combinators: O——0in outO Oin Oth_Oig

parallel composition,
relabelling and hiding.

| | TNHOBUF

(a:BUFF || b:BUFF)
/{in/a.in, a.out/b.in, out/b.out}
@{in,out}.
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Structure Diagrams
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CLIENT
SERVER

(call->wait->continue->CLIENT) .
(request->service->reply->SERVER) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.
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Structure Diagrams
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CLIENT
SERVER

(call->wait->continue->CLIENT) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.

(request->service->reply->SERVER) .

Structure diagram for CLIENT SERVER ?
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Structure Diagrams %’

CLIENT
SERVER

(call->wait->continue->CLIENT) .
(request->service->reply->SERVER) .

| ICLIENT SERVER = (CLIENT | |SERVER)
/{reply/wait,
call/request}.

Structure diagram for CLIENT SERVER ?

CLIENT  call call request SERVER

)

O continue wait reply reply service (
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Stru Ctu re D i ag ra m S UNIVERSITY OF ﬁ:ERN DENMARK

SERVERvVZ2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

DM519 Concurrent Programming

37

37



Stru Ctu re D i ag ra ms UNIVERSITY OF ﬁ:tm DENMARK
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SERVERv2 = (accept.request
->service->accept.reply->SERVERV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

Structure diagram for CLIENT SERVERv2 ?

CLIENTV2 cal o—<@  Laccept  SERVERV?2

O continue service O

Simply use the shared prefix.
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RESOURCE = (acquire->release->RESOURCE) .
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Structure Diagrams - Resource Sharing %’

RESOURCE
USER

(acquire->release->RESOURCE) .
(printer.acquire->use->printer.release->USER) .
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Structure Diagrams - Resource Sharing %’

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use->printer.release->USER).

| | PRINTER SHARE =
(2:USER || b:USER || {a,b}::printer:RESOURCE) .
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Structure Diagrams - Resource Sharing %’

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use->printer.release->USER).

| | PRINTER SHARE =
(2:USER || b:USER || {a,b}::printer:RESOURCE) .

Shared resources are shown as "rounded rectangles”:

PRINTER_SHARE
a:USER —
printer (
printer:
RESOURCE
(Hacquire
b:USER ’yrelease
printer ¢
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THREAD = OFF,
OFF = (toggle->ON
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OFF =

ON

THREAD

= OFF,

(toggle->ON
| abort->STOP) ,

(toggle->OFF
| output->0ON
| abort->STOP) .
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THREAD = OFF,

OFF = (toggle->ON
| abort->STOP) ,

ON = (toggle->OFF
| output->ON
| abort->STOP) .

| ITHREAD DEMO =
(a:THREAD || b:THREAD)

/{stop/{a,b}.abort}.
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THREAD = OFF,

OFF = (toggle->ON
| abort->STOP) ,

ON = (toggle->OFF
| output->0ON
| abort->STOP) .

| |THREAD DEMO =
(a:THREAD || b:THREAD)
/{stop/{a,b}.abort}.
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OFF =

ON =

THREAD

= OFF,
(toggle->ON

| abort->STOP) ,

(toggle->OFF
| output->ON

| abort->STOP) .

| ITHREAD DEMO =

(a:THREAD | |

/ toggle

togzle

stop

stop

output

b : THREAD)
/{stop/{a,b}.abort}.

Interpret:

a.toggle

THREAD DEMO

a.output

stop

a:T O

J

C

) b: T

bﬂogﬁe

.output

\J
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ThreadDemo Code: MyThread

b

THREAD DEMO

}

try {

}

b}

public void toggle() {

private void output () {
System.out.println(getName ()+"“: output”) ;

public void run() {

class MyThread extends Thread ({
private boolean on;

MyThread (String name) { super (name),; this.on = false; }

on

public void abort() { this.interrupt(), }

while (!interrupted()) {
if (on) output();
sleep (500) ;

} catch(Int’Exc’ ) {}
System.out.println(“Done!”) ;

aT O STP O b:T

= lon; }

THREAD = OFF,

OFF = (toggle->ON
|abort->STOP),

ON = (toggle->OFF
| output->0ON
|abort->STOP) .

| | THREAD DEMO =
(a:THREAD || b:THREAD)
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ThreadDemo Code: ThreadDemo

b

}

class ThreadDemo {

THREAD DEMO

aT O S*["“ O b:T

public static void main(String[] args) {

}

MyThread a = new MyThread(“a”);
MyThread b = new MyThread(“b”) ;
a.start(); b.start();
while (true) {
switch (readChar()) {
case ‘a’: a.toggle();

THREAD
OFF =

ON

= OFF,

(toggle->ON
|abort->STOP) ,

(toggle->0FF
|output->0N
|abort->STOP) .

| | THREAD DEMO =

(a:THREAD || b:THREAD)
/{stop/{a,b} .abort}.

break;
case ‘b’: b.toggle()
break;
case ‘i1’: stop(a,b);
return;
}
}
private stop (MyThread a, MyThread b) {
a.abort() ;
b.abort () ;
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® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

® Structure diagrams

@®Practice

® Multiple threads in Java.
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