
DM519 Concurrent Programming

Chapter 8

Model-Based Design

1
1

DM519 Concurrent Programming

Repetition: Chapter 7
Safety & Liveness

2

property ONEWAY = EMPTY,
EMPTY = (red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]),

RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when (i==1) red[ID].exit -> EMPTY
 |when (i>1) red[ID].exit -> RED[i-1]),

BLUE[j:ID]= (blue[ID].enter -> BLUE[j+1]
 |when (j==1) blue[ID].exit -> EMPTY
 |when (j>1) blue[ID].exit -> BLUE[j-1]).

A safety property asserts that nothing bad happens.

2

DM519 Concurrent Programming

Repetition: Chapter 7
Safety & Liveness

2

property ONEWAY = EMPTY,
EMPTY = (red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]),

RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when (i==1) red[ID].exit -> EMPTY
 |when (i>1) red[ID].exit -> RED[i-1]),

BLUE[j:ID]= (blue[ID].enter -> BLUE[j+1]
 |when (j==1) blue[ID].exit -> EMPTY
 |when (j>1) blue[ID].exit -> BLUE[j-1]).

A safety property asserts that nothing bad happens.

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

A liveness property asserts that something good eventually happens.

2

DM519 Concurrent Programming

Model-Based Design

3
3

DM519 Concurrent Programming

Model-Based Design

Concepts:
 design process:
 - from requirements to models
 - from models to implementations

3
3

DM519 Concurrent Programming

Model-Based Design

Concepts:
 design process:
 - from requirements to models
 - from models to implementations

Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system

3
3

DM519 Concurrent Programming

Model-Based Design

Concepts:
 design process:
 - from requirements to models
 - from models to implementations

Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system

Practice:
 model “interpretation”:
 - to infer actual system behavior
 active threads and passive monitors

3
3

DM519 Concurrent Programming

Model-Based Design

Concepts:
 design process:
 - from requirements to models
 - from models to implementations

Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system

Practice:
 model “interpretation”:
 - to infer actual system behavior
 active threads and passive monitors

Aim: rigorous design process.
3

3

DM519 Concurrent Programming

Model-Based Design

Concepts:
 design process:
 - from requirements to models
 - from models to implementations

Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system

Practice:
 model “interpretation”:
 - to infer actual system behavior
 active threads and passive monitors

Aim: rigorous design process.

Case Study: cruise controller

3
3

DM519 Concurrent Programming

From Requirements To Models

4
4

DM519 Concurrent Programming

8.1 From Requirements To Models

5
5

DM519 Concurrent Programming

8.1 From Requirements To Models

Requirements

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

Any
appropriate

design
approach

can be used

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactionsAny
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactions

2. identify and define the main processes

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactions

2. identify and define the main processes

3. identify and define the properties of interest

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactions

2. identify and define the main processes

3. identify and define the properties of interest

4. structure the processes into an architecture

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactions

2. identify and define the main processes

3. identify and define the properties of interest

4. structure the processes into an architecture

♦ check traces of interest

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

♦ goals of the system
♦ scenarios (Use-Case models)
♦ properties of interest

8.1 From Requirements To Models

Requirements

Model

1. identify the main events, actions, and interactions

2. identify and define the main processes

3. identify and define the properties of interest

4. structure the processes into an architecture

♦ check traces of interest
♦ check properties of interest

Any
appropriate

design
approach

can be used

Determine appropriate level of abstraction

5
5

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

buttonsCruise control

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

buttonsCruise control

Cruise control display

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

buttonsCruise control

Cruise control display

Requirements:

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

Press ‘on’ when the engine
is started -> record current
speed and enable the
system;

buttonsCruise control

Cruise control display

Requirements:

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

Press ‘on’ when the engine
is started -> record current
speed and enable the
system;

buttonsCruise control

Cruise control display

Maintain the recorded
speed.

Requirements:

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

Press ‘on’ when the engine
is started -> record current
speed and enable the
system;

‘brake’, ‘accelerator’
or ‘off’ -> disables the
system.

buttonsCruise control

Cruise control display

Maintain the recorded
speed.

Requirements:

6
6

DM519 Concurrent Programming

Example: A Cruise Control System -
Requirements

Press ‘on’ when the engine
is started -> record current
speed and enable the
system;

‘resume’ or ‘on’ -> re-
enables the system.

‘brake’, ‘accelerator’
or ‘off’ -> disables the
system.

buttonsCruise control

Cruise control display

Maintain the recorded
speed.

Requirements:

6
6

DM519 Concurrent Programming

A Cruise Control System - Hardware

throttle

7
7

DM519 Concurrent Programming

A Cruise Control System - Hardware

Parallel Interface Adapter (PIA) is polled every 100msec. It
records the actions of the sensors:

• buttons (on, off, resume)

• brake (pressed)
• accelerator (pressed)
• engine (on, off).

throttle

7
7

DM519 Concurrent Programming

A Cruise Control System - Hardware

Wheel Revolution Sensor generates interrupts to enable the car
speed to be calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It
records the actions of the sensors:

• buttons (on, off, resume)

• brake (pressed)
• accelerator (pressed)
• engine (on, off).

throttle

7
7

DM519 Concurrent Programming

A Cruise Control System - Hardware

Wheel Revolution Sensor generates interrupts to enable the car
speed to be calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It
records the actions of the sensors:

• buttons (on, off, resume)

• brake (pressed)
• accelerator (pressed)
• engine (on, off).

Output: The cruise control system controls the car speed by setting
the throttle via the digital-to-analogue (D/A) converter.

throttle

7
7

DM519 Concurrent Programming

Model - Design

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,
 speed,

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,
 speed,
 setThrottle, zoom,

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,
 speed,
 setThrottle, zoom,
 clearSpeed, recordSpeed,

8
8

DM519 Concurrent Programming

Model - Design

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,
 speed,
 setThrottle, zoom,
 clearSpeed, recordSpeed,
 enableControl, disableControl.

8
8

DM519 Concurrent Programming

Model - Design

set Sensors = {engineOn, engineOff, accelerator, brake,
 on, off, resume}

set Engine = {engineOn, engineOff}

set Prompts = {enableControl, disableControl,
 clearSpeed, recordSpeed}

9

1. Identify the main events, actions, and interactions:
 on, off, resume,
 brake, accelerator, engineOn, engineOff,
 speed,
 setThrottle, zoom,
 clearSpeed, recordSpeed,
 enableControl, disableControl.

9

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Throttle
sets the
actual
throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Throttle
sets the
actual
throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

Controlling
the state
(of the controller)

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

Controlling
the state
(of the controller)

Controlling
the throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

Engine

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10
10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

Engine

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10

Sensors

10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

Engine

speed

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10

Sensors

10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

PromptsEngine

speed

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10

Sensors

10

DM519 Concurrent Programming

Model - Outline Design

2. Identify and define the main processes:

Input Speed monitors
the speed (when the
engine is on), and
provides the current
speed readings to the
speed control

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events

Cruise State Controller
triggers clearSpeed and
recordSpeed, and enables-/
disables the speed control

Speed Control clears and
records the speed, and sets
the throttle accordingly
when enabled

Throttle
sets the
actual
throttle

PromptsEngine

speed setThrottle

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

Controlling
the state
(of the controller)

Controlling
the throttle

10

Sensors

10

DM519 Concurrent Programming

Model – Design (Step 1+2+3)

11
11

DM519 Concurrent Programming

Model – Design (Step 1+2+3)

1. Identify the main events, actions, and interactions:

 on, off, resume, brake, accelerator
 engineOn, engineOff,
 speed, setThrottle
 clearSpeed,recordSpeed,
 enableControl,disableControl

Sensors

Prompts

11
11

DM519 Concurrent Programming

Model – Design (Step 1+2+3)

1. Identify the main events, actions, and interactions:

 on, off, resume, brake, accelerator
 engineOn, engineOff,
 speed, setThrottle
 clearSpeed,recordSpeed,
 enableControl,disableControl

2. Identify and define the main processes:

 Sensor Scan, Input Speed,
 Cruise Controller, Speed Control, and
 Throttle

Sensors

Prompts

11
11

DM519 Concurrent Programming

Model – Design (Step 1+2+3)

1. Identify the main events, actions, and interactions:

 on, off, resume, brake, accelerator
 engineOn, engineOff,
 speed, setThrottle
 clearSpeed,recordSpeed,
 enableControl,disableControl

2. Identify and define the main processes:

 Sensor Scan, Input Speed,
 Cruise Controller, Speed Control, and
 Throttle

3. Identify and define the main properties of interest:
 safety: cruise control disabled when

 off, brake or accelerator is pressed.

Sensors

Prompts

11
11

DM519 Concurrent Programming

Model - Design (Step 4)

4. Structure the processes into an architecture:

12
12

DM519 Concurrent Programming

Model - Design (Step 4)

The CONTROL system is structured as two processes:
 - CRUISECONTROLLER (controlling the state); and
 - SPEEDCONTROL (controlling the throttle)

4. Structure the processes into an architecture:

12
12

DM519 Concurrent Programming

Model Elaboration - Process Definitions

13

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

13

DM519 Concurrent Programming

Model Elaboration - Process Definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

13

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

13

DM519 Concurrent Programming

Model Elaboration - Process Definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

 // monitor speed when engine on
INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED // monitor speed
 |engineOff -> INPUTSPEED).

13

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

13

DM519 Concurrent Programming

Model Elaboration - Process Definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

 // monitor speed when engine on
INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED // monitor speed
 |engineOff -> INPUTSPEED).

 // zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

13

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

13

DM519 Concurrent Programming

Model Elaboration - Process Definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

 // monitor speed when engine on
INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED // monitor speed
 |engineOff -> INPUTSPEED).

 // zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

 // perform speed control when enabled
SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

13

set Sensors = {engineOn, engineOff, accelerator, brake, on, off, resume}
set Engine = {engineOn, engineOff}
set Prompts = {enableControl, disableControl, clearSpeed, recordSpeed}

13

DM519 Concurrent Programming

Model Elaboration - Process Definitions

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 | DisableActions -> -> INACTIVE),

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 | DisableActions -> -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl-> CRUISING
 |DisableActions -> ACTIVE),

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 | DisableActions -> -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl-> CRUISING
 |DisableActions -> ACTIVE),
 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 | DisableActions -> -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl-> CRUISING
 |DisableActions -> ACTIVE),
 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed
CRUISING =(engineOff -> INACTIVE
 |DisableActions ->disableControl-> STANDBY

 |on->recordSpeed -> enableControl-> CRUISING),

14
14

DM519 Concurrent Programming

Model Elaboration - Process Definitions

set DisableActions={off,brake,accelerator}
CRUISECONTROLLER = INACTIVE,

INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 | DisableActions -> -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl-> CRUISING
 |DisableActions -> ACTIVE),
 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed
CRUISING =(engineOff -> INACTIVE
 |DisableActions ->disableControl-> STANDBY

 |on->recordSpeed -> enableControl-> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl-> CRUISING
 |on-> recordSpeed-> enableControl-> CRUISING
 |DisableActions -> STANDBY).

14
14

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

15
15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

15
15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

15

- Is control enabled after the engine is switched on
 and the on button is pressed?

15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

15

- Is control enabled after the engine is switched on
 and the on button is pressed?
- Is control disabled when the brake is then pressed?

15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

15

- Is control enabled after the engine is switched on
 and the on button is pressed?
- Is control disabled when the brake is then pressed?
- Is control re-enabled when resume is then pressed?

15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

Verification (aka. model-checking) will exhaustively analyze all
possible traces.

15

- Is control enabled after the engine is switched on
 and the on button is pressed?
- Is control disabled when the brake is then pressed?
- Is control re-enabled when resume is then pressed?

15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

Verification (aka. model-checking) will exhaustively analyze all
possible traces.

15

- Is control enabled after the engine is switched on
 and the on button is pressed?
- Is control disabled when the brake is then pressed?
- Is control re-enabled when resume is then pressed?

Safety: Is the control always disabled when
 off, brake, or accelerator is pressed?

15

DM519 Concurrent Programming

Model - CONTROL Sub-System

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

Testing (animation in LTSA) will check particular traces

Verification (aka. model-checking) will exhaustively analyze all
possible traces.

15

- Is control enabled after the engine is switched on
 and the on button is pressed?
- Is control disabled when the brake is then pressed?
- Is control re-enabled when resume is then pressed?

Safety: Is the control always disabled when
 off, brake, or accelerator is pressed?
Progress: Can every action eventually be selected?

15

DM519 Concurrent Programming

Model - Safety Properties

Safety checks are compositional.

If there is no violation at a sub-system level, then there cannot be a
violation when the sub-system is composed with other sub-systems.

This is because, if the ERROR state of a particular safety property is
unreachable in the LTS of the sub-system, it remains unreachable in
any subsequent parallel composition which includes the sub-system.

P |= S ∧ Q |= S => (P||Q) |= S

/* safety */ property S = ...

16
16

DM519 Concurrent Programming

Model - Safety Properties

Thus: Safety properties should be composed with the appropriate
(sub-)system to which the property refers.

Safety checks are compositional.

If there is no violation at a sub-system level, then there cannot be a
violation when the sub-system is composed with other sub-systems.

This is because, if the ERROR state of a particular safety property is
unreachable in the LTS of the sub-system, it remains unreachable in
any subsequent parallel composition which includes the sub-system.

P |= S ∧ Q |= S => (P||Q) |= S

/* safety */ property S = ...

16
16

DM519 Concurrent Programming

Model - Safety Properties

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 | DisableActions -> SAFETYACTION

 | disableControl -> CRUISESAFETY),

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 | DisableActions -> SAFETYACTION

 | disableControl -> CRUISESAFETY),

SAFETYACTION = (disableControl->CRUISESAFETY).

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY).

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 | DisableActions -> SAFETYACTION

 | disableControl -> CRUISESAFETY),

SAFETYACTION = (disableControl->CRUISESAFETY).

Composition with CONTROL processes:

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

Verify CRUISESAFETY?

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY).

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 | DisableActions -> SAFETYACTION

 | disableControl -> CRUISESAFETY),

SAFETYACTION = (disableControl->CRUISESAFETY).

Composition with CONTROL processes:

Is the control always disabled when off/brake/acc pressed?

17
17

DM519 Concurrent Programming

Model - Safety Properties

Verify CRUISESAFETY?

||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY).

property CRUISESAFETY =
 ({on,resume} -> SAFETYCHECK,
 | {DisableActions,disableControl} -> CRUISESAFETY),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 | DisableActions -> SAFETYACTION

 | disableControl -> CRUISESAFETY),

SAFETYACTION = (disableControl->CRUISESAFETY).

Composition with CONTROL processes:

Is the control always disabled when off/brake/acc pressed?

L
17

17

DM519 Concurrent Programming

Model - Safety Properties

Safety analysis using LTSA produces the following violation:

Trace to property violation in CRUISESAFETY:
 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 off
 off

18
18

DM519 Concurrent Programming

Model - Safety Properties

Safety analysis using LTSA produces the following violation:

Trace to property violation in CRUISESAFETY:
 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 off
 off

Strange circumstances!

If the system is enabled by
switching the engine on and
pressing the on button, and then
the engine is switched off, it
appears that the control system is
not disabled.

18
18

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

P |= L ∧ Q |= L => (P||Q) |= L

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

P |= L ∧ Q |= L => (P||Q) |= L

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

This is because an action in the sub-system may satisfy progress yet
be unreachable when the sub-system is composed with other sub-
systems which constrain system behavior.

P |= L ∧ Q |= L => (P||Q) |= L

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

This is because an action in the sub-system may satisfy progress yet
be unreachable when the sub-system is composed with other sub-
systems which constrain system behavior.

P |= L ∧ Q |= L => (P||Q) |= L

However,
we have that:

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

This is because an action in the sub-system may satisfy progress yet
be unreachable when the sub-system is composed with other sub-
systems which constrain system behavior.

P |= L ∧ Q |= L => (P||Q) |= L

Assume L ⊆ α(P), L ⊆ α(Q):
(P||Q) |= L => P |= L ∧ Q |= L

However,
we have that:

19
19

DM519 Concurrent Programming

Model - Progress Properties

Thus: Progress checks should be conducted on the complete
target system after satisfactory completion of the safety checks.

Progress checks are not compositional !

Even if there is no progress violation at a sub-system level, a
progress violation may “appear” when the sub-system is composed
with other sub-systems.

This is because an action in the sub-system may satisfy progress yet
be unreachable when the sub-system is composed with other sub-
systems which constrain system behavior.

P |= L ∧ Q |= L => (P||Q) |= L

Assume L ⊆ α(P), L ⊆ α(Q):
(P||Q) |= L => P |= L ∧ Q |= L

However,
we have that:

19
19

DM519 Concurrent Programming

Model - Progress Properties

Progress check: ||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

20
20

DM519 Concurrent Programming

Model - Progress Properties

Progress violation for actions:
{accelerator, brake, clearSpeed, disableControl, enableControl,
engineOff, engineOn, off, on, recordSpeed, resume}
Path to terminal set of states:
 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 engineOn
Actions in terminal set:
{speed, setThrottle}

Progress check: ||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

20
20

DM519 Concurrent Programming

Model - Progress Properties

Progress violation for actions:
{accelerator, brake, clearSpeed, disableControl, enableControl,
engineOff, engineOn, off, on, recordSpeed, resume}
Path to terminal set of states:
 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 engineOn
Actions in terminal set:
{speed, setThrottle}

Progress check: ||CONTROL = (CRUISECONTROLLER||SPEEDCONTROL).

When the engine is switched off:

 - CruiseController becomes
 inactive, whereas

 - SpeedControl is not disabled!

20
20

DM519 Concurrent Programming

Cruise Control Model - Minimized LTS

||CRUISEMINIMIZED = (CRUISECONTROLSYSTEM)
 @ {Sensors,speed}.

Action hiding and
minimization can
help to reduce the
size of the LTS
diagram and make it
easier to interpret.

Progress violation trace: engineOn -> clearSpeed -> on ->
recordSpeed -> enableControl -> engineOff -> engineOn.

21

engineOn

off
brake
accelerator
speed

off
brake
acceleratorengineOff

on

speed

off
brake

accelerator

engineOff

on
speed

engineOn

off
brake
accelerator
speed

speed off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3 4 5

21

DM519 Concurrent Programming

Model – Revised Cruise Control System

 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed
 // or when the engine is turned off!!!
CRUISING =(engineOff -> INACTIVE
 |disableActions-> disableControl -> STANDBY
 |on-> recordSpeed-> enableControl-> CRUISING),

Fix CRUISECONTROLLER so that it disables the SPEEDCONTROLLER
when the engine is switched off:

22
22

DM519 Concurrent Programming

Model – Revised Cruise Control System

 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed
 // or when the engine is turned off!!!
CRUISING =(engineOff -> INACTIVE
 |disableActions-> disableControl -> STANDBY
 |on-> recordSpeed-> enableControl-> CRUISING),

Fix CRUISECONTROLLER so that it disables the SPEEDCONTROLLER
when the engine is switched off:

-> disableControl

22
22

DM519 Concurrent Programming

Model – Revised Cruise Control System

 // enable speed control when cruising,
 // disable when off, brake, or accelerator pressed
 // or when the engine is turned off!!!
CRUISING =(engineOff -> INACTIVE
 |disableActions-> disableControl -> STANDBY
 |on-> recordSpeed-> enableControl-> CRUISING),

Fix CRUISECONTROLLER so that it disables the SPEEDCONTROLLER
when the engine is switched off:

OK now?

-> disableControl

22
22

DM519 Concurrent Programming

Model – Revised Cruise Control System
(Properties)

property CRUISESAFETYv2 =
 ({off,accelerator,..., } -> CRUISESAFETYv2
 |{on,resume} -> SAFETYCHECK),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 |{off,..., } -> SAFETYACTION
 |disableControl -> CRUISESAFETYv2),
SAFETYACTION = (disableControl -> CRUISESAFETYv2).

engineOff

engineOff

23
23

DM519 Concurrent Programming

Model – Revised Cruise Control System
(Properties)

property CRUISESAFETYv2 =
 ({off,accelerator,..., } -> CRUISESAFETYv2
 |{on,resume} -> SAFETYCHECK),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 |{off,..., } -> SAFETYACTION
 |disableControl -> CRUISESAFETYv2),
SAFETYACTION = (disableControl -> CRUISESAFETYv2).

engineOff

engineOff

23

engineOn

off
brake
accelerator
speed

off
brake
accelerator

engineOff

on

speed

off
brake

accelerator

engineOff

on
speed

off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3

23

DM519 Concurrent Programming

Model – Revised Cruise Control System
(Properties)

property CRUISESAFETYv2 =
 ({off,accelerator,..., } -> CRUISESAFETYv2
 |{on,resume} -> SAFETYCHECK),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK
 |{off,..., } -> SAFETYACTION
 |disableControl -> CRUISESAFETYv2),
SAFETYACTION = (disableControl -> CRUISESAFETYv2).

No deadlocks/errors

No progress violations
detected

engineOff

engineOff

23

engineOn

off
brake
accelerator
speed

off
brake
accelerator

engineOff

on

speed

off
brake

accelerator

engineOff

on
speed

off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3

23

DM519 Concurrent Programming

Model - System Sensitivities
(under Adverse Conditions)

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

24
24

DM519 Concurrent Programming

Model - System Sensitivities
(under Adverse Conditions)

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:
 {accelerator, brake, engineOff, engineOn,
 off, on, resume, setThrottle, zoom}
Trace to terminal set of states:
 engineOn
Cycle in terminal set:
 speed
Actions in terminal set:
 speed

24
24

DM519 Concurrent Programming

Model - System Sensitivities
(under Adverse Conditions)

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:
 {accelerator, brake, engineOff, engineOn,
 off, on, resume, setThrottle, zoom}
Trace to terminal set of states:
 engineOn
Cycle in terminal set:
 speed
Actions in terminal set:
 speed

Indicates that the system may be sensitive to the priority
of the action “speed”.

24
24

DM519 Concurrent Programming

Model Interpretation

Models can be used to indicate system sensitivities!

If it is possible that erroneous situations detected in the model may
occur in the implemented system, then the model should be revised to
find a design which ensures that those violations are avoided.

However, if it is considered that the real system will not exhibit this
behavior, then no further model revisions are necessary.

25
25

DM519 Concurrent Programming

Model Interpretation

Models can be used to indicate system sensitivities!

If it is possible that erroneous situations detected in the model may
occur in the implemented system, then the model should be revised to
find a design which ensures that those violations are avoided.

However, if it is considered that the real system will not exhibit this
behavior, then no further model revisions are necessary.

Model interpretation and correspondence to the implementation are
important in determining the relevance and adequacy of the model
design and its analysis.

25
25

DM519 Concurrent Programming

From Models To Implementation

26
26

DM519 Concurrent Programming

The Central Role Of Design Architecture

Design architecture describes the gross organization and global
structure of the system in terms of its constituent components.

27
27

DM519 Concurrent Programming

The Central Role Of Design Architecture

Design architecture describes the gross organization and global
structure of the system in terms of its constituent components.

27
27

DM519 Concurrent Programming

The Central Role Of Design Architecture

Design architecture describes the gross organization and global
structure of the system in terms of its constituent components.

We consider that the implementation should be considered as an
elaborated view of the basic design architecture.

27
27

DM519 Concurrent Programming

The Central Role Of Design Architecture

Design architecture describes the gross organization and global
structure of the system in terms of its constituent components.

We consider that the implementation should be considered as an
elaborated view of the basic design architecture.

S = M0 ≈ M1 ≈ M2 ≈ ... ≈ M∞ = I // Incremental model refinement

27
27

DM519 Concurrent Programming

8.2 From Models To Implementations

Model

Java

28
28

DM519 Concurrent Programming

8.2 From Models To Implementations

Model

Java

♦ identify the main active entities

- to be implemented as threads

28
28

DM519 Concurrent Programming

8.2 From Models To Implementations

Model

Java

♦ identify the main active entities

- to be implemented as threads
♦ identify the main (shared) passive entities

- to be implemented as monitors

28
28

DM519 Concurrent Programming

8.2 From Models To Implementations

Model

Java

♦ identify the main active entities

- to be implemented as threads
♦ identify the main (shared) passive entities

- to be implemented as monitors
♦ (identify the interactive display environment

- to be implemented as associated classes)

28
28

DM519 Concurrent Programming

8.2 From Models To Implementations

Model

Java

♦ identify the main active entities

- to be implemented as threads
♦ identify the main (shared) passive entities

- to be implemented as monitors
♦ (identify the interactive display environment

- to be implemented as associated classes)
♦ structure the classes as a (UML) class diagram

 - to be implemented

28
28

DM519 Concurrent Programming

Cruise Control System - Class Diagram

SpeedControl
interacts with
the car
simulation via
interface
CarSpeed.

CRUISECONTROLLER SPEEDCONTROL
29

29

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }
 synchronized void brake() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void accelerator() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void engineOff() {
 if (state != INACTIVE) {
 if (state == CRUISING) sc.disableControl();
 state = INACTIVE;
 }
 }
 ...

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }
 synchronized void brake() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void accelerator() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void engineOff() {
 if (state != INACTIVE) {
 if (state == CRUISING) sc.disableControl();
 state = INACTIVE;
 }
 }
 ...

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }
 synchronized void brake() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }
 synchronized void brake() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void accelerator() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

class StateController {
 final static int INACTIVE = 0,
 ACTIVE = 1, CRUISING = 2, STANDBY = 3; // controller states

 protected int state = INACTIVE; // initial state
 protected SpeedControl sc;

 StateController(CarSpeed cs, CruiseDisplay disp) {
 sc = new SpeedControl(cs, disp);
 }
 synchronized void brake() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void accelerator() {
 if (state == CRUISING)
 { sc.disableControl(); state = STANDBY; }
 }
 synchronized void engineOff() {
 if (state != INACTIVE) {
 if (state == CRUISING) sc.disableControl();
 state = INACTIVE;
 }
 }
 ...

Controller
is a passive
entity (it
reacts to
events) and
thus
implemented
as a monitor

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

30
30

DM519 Concurrent Programming

Class State-Controller

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

31
31

DM519 Concurrent Programming

Class State-Controller

 ...
 synchronized void engineOn() {
 if (state == INACTIVE) {
 sc.clearSpeed(); state = ACTIVE;
 }
 }

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

31
31

DM519 Concurrent Programming

Class State-Controller

 ...
 synchronized void engineOn() {
 if (state == INACTIVE) {
 sc.clearSpeed(); state = ACTIVE;
 }
 }
 synchronized void on() {
 if (state != INACTIVE) {
 sc.recordSpeed();
 sc.enableControl(); state = CRUISING;
 }
 }

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

31
31

DM519 Concurrent Programming

Class State-Controller

 ...
 synchronized void engineOn() {
 if (state == INACTIVE) {
 sc.clearSpeed(); state = ACTIVE;
 }
 }
 synchronized void on() {
 if (state != INACTIVE) {
 sc.recordSpeed();
 sc.enableControl(); state = CRUISING;
 }
 }
 synchronized void off() {
 if (state == CRUISING) {
 sc.disableControl(); state = STANDBY;
 }
 }

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

31
31

DM519 Concurrent Programming

Class State-Controller

 ...
 synchronized void engineOn() {
 if (state == INACTIVE) {
 sc.clearSpeed(); state = ACTIVE;
 }
 }
 synchronized void on() {
 if (state != INACTIVE) {
 sc.recordSpeed();
 sc.enableControl(); state = CRUISING;
 }
 }
 synchronized void off() {
 if (state == CRUISING) {
 sc.disableControl(); state = STANDBY;
 }
 }
 synchronized void resume() {
 if (state == STANDBY) {
 sc.enableControl(); state = CRUISING;
 }
 }
}

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on-> recordSpeed-> enableControl -> CRUISING),
CRUISING =(engineOff -> disableControl-> INACTIVE
 |{off,brake,accelerator}
 ->disableControl -> STANDBY
 |on-> recordSpeed-> enableControl -> CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on-> recordSpeed-> enableControl -> CRUISING).

31
31

DM519 Concurrent Programming

Class SpeedControl SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32
32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32
32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state
 protected int set_speed = 0; // initial speed setting

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state
 protected int set_speed = 0; // initial speed setting
 protected Thread sc;
 protected CarSpeed cs; // interface to the car (simulator)
 protected CruiseDisplay disp;

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state
 protected int set_speed = 0; // initial speed setting
 protected Thread sc;
 protected CarSpeed cs; // interface to the car (simulator)
 protected CruiseDisplay disp;

 SpeedControl(CarSpeed c, CruiseDisplay d){
 this.cs = c; this.disp = d; d.disable(); d.record(0);
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state
 protected int set_speed = 0; // initial speed setting
 protected Thread sc;
 protected CarSpeed cs; // interface to the car (simulator)
 protected CruiseDisplay disp;

 SpeedControl(CarSpeed c, CruiseDisplay d){
 this.cs = c; this.disp = d; d.disable(); d.record(0);
 }

 synchronized void recordSpeed() {
 set_speed = cs.getSpeed();
 disp.record(set_speed);
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl

class SpeedControl implements Runnable {
 final static int DISABLED = 0; // speed control states
 final static int ENABLED = 1;
 protected int state = DISABLED; // initial state
 protected int set_speed = 0; // initial speed setting
 protected Thread sc;
 protected CarSpeed cs; // interface to the car (simulator)
 protected CruiseDisplay disp;

 SpeedControl(CarSpeed c, CruiseDisplay d){
 this.cs = c; this.disp = d; d.disable(); d.record(0);
 }

 synchronized void recordSpeed() {
 set_speed = cs.getSpeed();
 disp.record(set_speed);
 }

 synchronized void clearSpeed() {
 if (state == DISABLED) {
 set_speed = 0;
 disp.record(set_speed);
 }
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

32

SpeedControl is an
active entity; when
enabled, a new
thread is created
(which periodically
obtains car speed
and sets the
throttle).

32

DM519 Concurrent Programming

Class SpeedControl SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

33
33

DM519 Concurrent Programming

Class SpeedControl

 ...

 synchronized void enableControl() {
 if (state == DISABLED) {
 disp.enable();
 sc = new Thread(this);
 sc.start();
 state = ENABLED;
 }
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

33
33

DM519 Concurrent Programming

Class SpeedControl

 ...

 synchronized void enableControl() {
 if (state == DISABLED) {
 disp.enable();
 sc = new Thread(this);
 sc.start();
 state = ENABLED;
 }
 }

 synchronized void disableControl() {
 if (state == ENABLED) {
 disp.disable();
 state = DISABLED;
 }
 }

 ...

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

33
33

DM519 Concurrent Programming

Class SpeedControl SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34
34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34
34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34
34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);
}

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

 sc = null; // throw away SpeedController thread
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);
}

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

 sc = null; // throw away SpeedController thread
 }

synchronized private double speed() {
 return ...cs.getSpeed()...;
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);
}

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

 sc = null; // throw away SpeedController thread
 }

synchronized private double speed() {
 return ...cs.getSpeed()...;
 }
 synchronized private void setThrottle(double throttle) {
 cs.setThrottle(...throttle...);
 }

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);
}

34

DM519 Concurrent Programming

Class SpeedControl

 public void run() { // the speed controller thread
 try {

} catch (InterruptedException _) {}

 sc = null; // throw away SpeedController thread
 }

synchronized private double speed() {
 return ...cs.getSpeed()...;
 }
 synchronized private void setThrottle(double throttle) {
 cs.setThrottle(...throttle...);
 }

SpeedControl is an example of a class that combines both
 - synchronized methods (to update local vars); and
 - a thread.

SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed} -> DISABLED
 |enableControl -> ENABLED),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 |disableControl -> DISABLED).

34

while (state == ENABLED) {
 double s = speed();
 setThrottle(s);
 Thread.sleep(500);
}

34

DM519 Concurrent Programming

Summary: Model-Based Design

35
35

DM519 Concurrent Programming

Summary: Model-Based Design
Concepts:
 design process:
 - from requirements to models
 - from models to implementations

35
35

DM519 Concurrent Programming

Summary: Model-Based Design
Concepts:
 design process:
 - from requirements to models
 - from models to implementations
Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system

35
35

DM519 Concurrent Programming

Summary: Model-Based Design
Concepts:
 design process:
 - from requirements to models
 - from models to implementations
Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system
Practice:
 model “interpretation”:
 - to infer actual system behavior
 active threads and passive monitors

35
35

DM519 Concurrent Programming

Summary: Model-Based Design
Concepts:
 design process:
 - from requirements to models
 - from models to implementations
Models:
 check properties of interest:
 - safety of the appropriate (sub-)system
 - progress of the overall system
Practice:
 model “interpretation”:
 - to infer actual system behavior
 active threads and passive monitors

Aim: rigorous design process.
35

35

