
DM519 Concurrent Programming

Chapter 3 Concurrent Execution

!1

DM519 Concurrent Programming

Repetition (Concepts, Models, and Practice)

uConcepts:

lWe adopt a model-based approach for the design and

construction of concurrent programs

u Safe model => safe program

uModels:

lWe use finite state models to represent concurrent behaviour  

(Finite State Processes and Labelled Transition Systems)

!

uPractice:

lWe use Java for constructing concurrent programs
!2

DM519 Concurrent Programming

Repetition (Models; Lts, Fsp)

Model = simplified representation of the real world

uBased on Labelled Transition Systems (LTS):

 

!

!

!

uDescribed textually as Finite State Processes

(FSP):
EngineOff = (engineOn -> EngineOn),
EngineOn = (engineOff -> EngineOff  
 |speed -> EngineOn).

Focuses on concurrency aspects (of the program) 
- everything else abstracted away

!3

DM519 Concurrent Programming

Repetition (Finite State Processes; Fsp)

Finite State Processes (FSP):

P : STOP // termination
 : (x -> P) // action prefix
 : (when (…) x -> P) // guard
 : P | P’ // choice
 : P +{ … } // alphabet extension
 : X // process variable!

♦ action indexing x[i:1..N] -> P or x[i] -> P

♦ process parameters P(N=3) = …

♦ constant definitions const N = 3

♦ range definitions range R = 0..N
Which constructions do not add expressive power?
(and are thus only "syntactic sugar").

!4

DM519 Concurrent Programming

Repetition (Java Threads)

Subclassing java.lang.Thread:
!

!

!

!

!

!

Implementing java.lang.Runnable:

class MyThread extends Thread {
 public void run() {
 // ...
 }
}

class MyRun implements Runnable {
 public void run() {
 // ...
 }
}

Thread t = new MyThread();
t.start();
// ...

Thread t = new Thread(new MyRun());
t.start();
// ...

!5

DM519 Concurrent Programming

Chapter 3: Concurrent Execution

Concepts: processes - concurrent execution
 and interleaving
 process interaction
!

Models: parallel composition of asynchronous processes
 interleaving

 interaction - shared actions
 process labelling, and action relabelling and hiding

 structure diagrams
!

Practice: Multithreaded Java programs

!6

DM519 Concurrent Programming

Definition: Parallelism

uParallelism (aka. Real/True Concurrent Execution)

!

lPhysically simultaneous processing

uInvolves multiple processing elements (PEs)  

and/or independent device operations

A

Time

B
C

!7

DM519 Concurrent Programming

Definition: Concurrency

A

Time

B
C

uConcurrency (aka. Pseudo-Concurrent Execution)

!

lLogically simultaneous processing

uDoes not imply multiple processing elements (PEs)

uRequires interleaved execution on a single PE

!8

DM519 Concurrent Programming

Parallelism vs Concurrency

Both concurrency and parallelism require controlled access to shared
resources.
!
We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).
!
Also, creating software independent of the physical setup, makes us
capable of deploying it on any platform.

uParallelism uConcurrency

A

Time

B
C

A

Time

B
C

!9

DM519 Concurrent Programming

3.1 Modelling Concurrency

uHow do we model concurrency?
!

!

!

!

!

!

!

!

lArbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

x

Possible execution sequences?
!
!

y

Asynchronous
model of execution

• x ; y
• y ; x
• x || y

!10

DM519 Concurrent Programming

3.1 Modelling Concurrency

u How should we model process execution speed?
!

!

!

!

lWe choose to abstract away time:

uArbitrary speed!

+: independent of architecture, processor speed,  
 scheduling policies, …

-: we can say nothing of real-time properties

a

b

x

y

!11

DM519 Concurrent Programming

• scratchàthinkàtalk
• thinkàscratchàtalk
• thinkàtalkàscratch

Possible traces as
a result of action
interleaving?

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ‘||’ is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).
!
||CONVERSE_ITCH = (ITCH || CONVERSE).

!12

Parallel Composition - Action Interleaving

DM519 Concurrent Programming

Parallel Composition - Action Interleaving

2 states 3 states

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH
2 x 3 states

Cartesian product?

!13

DM519 Concurrent Programming

Parallel Composition - Algebraic Laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)
 = (P||Q||R).

Small example:

MALTHE = (climbTree->fall->MALTHE).
OSKAR = (run->jump->OSKAR).
!
||MALTHE_OSKAR = (MALTHE || OSKAR).

LTS? Traces? Number of states?

!14

DM519 Concurrent Programming

Modelling Interaction - Shared Actions

If processes in a composition have actions in common, these
actions are said to be shared.  
Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).
!
||MAKE1_USE1 = (MAKE1 || USE1).

uShared Actions:

MAKE1
synchronises
with USE1 when
ready.

LTS? Traces? Number of states?

!15

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

3 x 3 states?

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).
!
||MAKE1_USE1 = (MAKE1 || USE1).

make ready

make

make

ready

ready

readyreadyready

use use use No…!

!16

DM519 Concurrent Programming

Modelling Interaction - Example

3 states
3 states

MAKE1 = (make->ready->STOP).
USE1 = (ready->use->STOP).
!
||MAKE1_USE1 = (MAKE1 || USE1).

make

ready

use

Interaction
may constrain
the overall
behaviour !

4 states!

ready

make

make

ready

ready

readyreadyready

use use

!17

DM519 Concurrent Programming

Example

P = (x -> y -> P).
Q = (y -> x -> Q).
!
||R = (P || Q).

LTS? Traces? Number of states?

2 states
2 states

!18

P = (a -> P | b -> P).  
Q = (c -> Q) + {a}.  
 
||PQ = (P || Q).

LTS? Traces?

DM519 Concurrent Programming

Modelling Interaction - Example

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).
!
||MAKER_USER = (MAKER || USER).

LTS? Traces?

Can we make sure the MAKER does not “get ahead of” the USER 
(i.e. never make before use); and if so, how?

!19

DM519 Concurrent Programming

Modelling Interaction - Handshake

A handshake is an action acknowledged by another process:

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used->USERv2).
!
||MAKER_USERv2 = (MAKERv2 || USERv2).

!20

DM519 Concurrent Programming

Modelling Interaction - Multiple Processes

Multi-party synchronisation:
MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).
!
||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

!21

DM519 Concurrent Programming

Composite Processes

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

||FACTORY = ((MAKE_A || MAKE_B)|| ASSEMBLE).

substitution of
def’n of MAKERS

associativity!

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Further simplification?

!22

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:
LTS? (a:SWITCH)

!23

DM519 Concurrent Programming

Process Labelling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).  

||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

Create an array of instances of the switch process:

!24

DM519 Concurrent Programming

Process Labelling By A Set Of Prefix Labels

{a1,..,an}::P replaces every action label x in the alphabet of P
with the labels a1.x,…,an.x.  
Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a1.x,…,an.x} -> X).

Process prefixing is useful for modelling shared resources:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

!25

DM519 Concurrent Programming

Process Prefix Labels For Shared Resources

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER || {a,b}::RESOURCE).

!26

DM519 Concurrent Programming

Example

X = (x -> STOP).

LTS? Traces? Number of states?

||SYS_1 = {a,b}:X.

||SYS_2 = {a,b}::X.

LTS? Traces? Number of states?

!27

{a...}:X creates one process per prefix

{a...}::X creates one process with all prefixes

DM519 Concurrent Programming

Action Relabelling

Relabelling to ensure that composed processes
synchronise on particular actions:

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is: 
 /{newlabel1/oldlabel1,… newlabeln/oldlabeln}.

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

!28

DM519 Concurrent Programming

Action Relabelling

||C_S = (C || S).

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

C S

C_S

C = (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

!29

DM519 Concurrent Programming

Action Relabelling - Prefix Labels

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
!
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

!
||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

!30

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the hiding operator \{a1,..,ax}
removes the action names a1..ax from the alphabet of P and makes
these concealed actions "silent". 
These silent actions are labelled tau.  
Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
 \{use}.

!31

DM519 Concurrent Programming

Action Hiding - Abstraction To Reduce Complexity

When applied to a process P, the interface
operator @{a1,..,ax} hides all actions in the
alphabet of P not labelled in the set a1..ax.

Sometimes it is more convenient to specify the set of labels to be
exposed....

USER = (acquire->use->release->USER)
 @{acquire,release}.

!32

DM519 Concurrent Programming

Action Hiding

USER = (acquire->use->release->USER)
 \{use}.
!
USER = (acquire->use->release->USER)

 @{acquire,release}.

The following definitions are equivalent:

Minimisation removes hidden
tau actions to produce an
LTS with equivalent
observable behaviour.

!33

DM519 Concurrent Programming

Structure Diagrams

P a
b

Process P with
alphabet {a,b}.

m
Parallel Composition
(P||Q)

c
x

b Q
d
x

P a
c
x

X Ya

S
yx

Composite process
||S = (X||Y) @ {x,y}

!34

/ {m/a,m/b },c/d

DM519 Concurrent Programming

Structure Diagrams

We use structure diagrams
to capture the structure of
a model expressed by the
static combinators:  
parallel composition,
relabelling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

||TWOBUF =  
 

(a:BUFF || b:BUFF)
 /{in/a.in, a.out/b.in, out/b.out}
 @{in,out}.

!35

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVER ?

CLIENT call request SERVERcall

replywait reply servicecontinue

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).  
 
||CLIENT_SERVER = (CLIENT||SERVER)  
 /{reply/wait,  
 call/request}.

!36

DM519 Concurrent Programming

Structure Diagrams

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2call

servicecontinue

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

!37

Simply use the shared prefix.

DM519 Concurrent Programming

Structure Diagrams - Resource Sharing

!38

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use->printer.release->USER).

||PRINTER_SHARE =
 (a:USER || b:USER || {a,b}::printer:RESOURCE).

Shared resources are shown as “rounded rectangles”:

DM519 Concurrent Programming

Java

!39

DM519 Concurrent Programming

Threaddemo Model

THREAD = OFF,
!
OFF = (toggle->ON
 |abort->STOP),
!
ON = (toggle->OFF
 |output->ON
 |abort->STOP).  
!

||THREAD_DEMO =  
 (a:THREAD || b:THREAD)  
 /{stop/{a,b}.abort}. Interpret:

toggle, abort  
 as inputs;

output  
 as output

a:T b:Tstop
a.toggle

a.output b.output

b.toggle
THREAD_DEMO

!40

DM519 Concurrent Programming

Threaddemo Code: Mythread

class MyThread extends Thread {
 private boolean on;
!
 MyThread(String name) { super(name); this.on = false; }
!
 public void toggle() { on = !on; }
!
 public void abort() { this.interrupt(); }
!
 private void output() {
 System.out.println(getName()+“: output”); 
 }
 public void run() {
 try {
 while (!interrupted()) {
 if (on) output();
 sleep(500);
 }
 } catch(Int’Exc’ _) {}
 System.out.println(“Done!”);  
 }}}

!41

DM519 Concurrent Programming

Threaddemo Code: Threaddemo

class ThreadDemo {
 public static void main(String[] args) {
 MyThread a = new MyThread(“a”);
 MyThread b = new MyThread(“b”);
 a.start(); b.start();
 while (true) {
 switch (readChar()) {
 case ‘a’: a.toggle();  
 break;
 case ‘b’: b.toggle();  
 break;
 case ‘i’: stop(a,b);  
 return;
 }
 }
 }
 private stop(MyThread a, MyThread b) {
 a.abort();
 b.abort();
 }
}

!42

DM519 Concurrent Programming

Summary

uConcepts

lConcurrent processes and process interaction

uModels

lAsynchronous (arbitrary speed) & interleaving (arbitrary order).

lParallel composition as a finite state process with action interleaving.

lProcess interaction by shared actions.

lProcess labelling and action relabelling and hiding.

lStructure diagrams

uPractice

lMultiple threads in Java.

!43

