Chapter 3 Concurrent Execultion UNIVERSITYOF&IERNDENMARK

DM519 Concurrent Programming 1

Repetition (Concepts, Models, and Practice) %’

® Concepts:

® We adopt a model-based approach for the design and

construction of concurrent programs

® Safe model => safe program

® Models:

® We use finite state models to represent concurrent behaviour

(Finite State Processes and Labelled Transition Systems)

®Practice:

® We use Java for constructing concurrent programs
DM519 Concurrent Programming 2

Repetition (Models; Lts, Fsp) %’

Model = simplified representation of the real world

® Based on Labelled Transition Systems (LTS):

Focuses on concurrency aspects (of the program)
- everything else abstracted away

engineOn

N
\/ speed

engineOff

® Described textually as Finite State Processes

EngineOff = (engineOn -> EngineOn),
(FSP)3 EngineOn = (engineOff -> EngineOff
| speed -> EngineOn) .

DM519 Concurrent Programming 3

Repetition (Finite State Processes; Fsp) %’

Finite State Processes (FSP):

P : STOP // termination
: (x -> P) // action prefix

(when (...) x -> P) // guard
P|P // choice
P+ ..} // alphabet extension
X // process variable

¢ action indexing x[i:1.N]->P or x[i]->P

¢ process parameters P(N=3) = ..

¢ constant definitions const N = 3

¢ range definitions range R = 0..N

Which constructions do not add expressive power?

(and are thus only "syntactic sugar").
DM519 Concurrent Programming 4

Re petiti O n (J ava T h read s) UNIVERSITY OF KERI\I DENMARK

Subclassing java.lang.Thread:

class MyThread extends Thread ({
public void run() ({

//

}
} Thread t = new MyThread() ;

t.start () ;
//

Implementing java.lang.Runnable:

class MyRun implements Runnable ({
public void run() ({

//

}
} Thread t = new Thread(new MyRun()) ;

t.start () ;
//

DM519 Concurrent Programming 5

Chapter 3: Concurrent ExeCUtion UN[VERSITYOFKERNDENMARK

COHCZPTS: processes - concurrent execution

and interleaving
process interaction

Models: parallel composition of asynchronous processes

interleaving
interaction - shared actions
process labelling, and action relabelling and hiding
structure diagrams

Practice: Multithreaded Java programs

DM519 Concurrent Programming

Defi n iti O n : Pa ral Iel is m UNIVERSITY OF KERN DENMARK

®Parallelism (aka. Real/True Concurrent Execution)

®Physically simultaneous processing

@ Involves multiple processing elements (PEs)

and/or independent device operations

DM519 Concurrent Programming

Defi n iti O n : C O n c u rre n cy UNIVERSITY OF tﬁ:ﬂw DENMARK

® Concurrency (aka. Pseudo-Concurrent Execution)

® | ogically simultaneous processing

® Does not imply multiple processing elements (PEs)

® Requires interleaved execution on a single PE

AF ——————— - -------—-- >

B - .- ----- >

Cr—- .- - - -
Time

DM519 Concurrent Programming 8

Pa ra I Ie I is m vs C O n c u rre n Cy UNIVERSITY OF KERN DENMARK

®Parallelism ® Concurrency
A esssssss—— - - - > L —— R >
B- -=> B - - - - - >
C-_—_—> Cr """ . ------- -
Time Time

Both concurrency and parallelism require controlled access to shared
resources.

We use the terms parallel and concurrent interchangeably (and generally
do not distinguish between real and pseudo-concurrent execution).

Also, creating software independent of the physical setup, makes us
capable of deploying it on any platform.

DM519 Concurrent Programming 9

3-1 MOdeIIing Concurrency UNIVERS[TYorﬁ:ERNDENMARK

® How do we model concurrency?

X Y

¢ oo &

Possible execution sequences?
[x ; y
[y " x
I Asynchronous

model of execution

® Arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

DM519 Concurrent Programming 10

3 m 1 M Odel I i n g CO n Cu rre n cy UNIVERSITY OF ﬁ:ﬂm DENMARK

® How should we model process execution speed?

b y

® We choose to abstract away time:

@ Arbitrary speed!
-i we can say nothing of real-time properties

+. independent of architecture, processor speed,
scheduling policies, ...

DM519 Concurrent Programming 11

Parallel Composition - Action Interleaving %’

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator ||’ is the
parallel composition operator.

ITCH
CONVERSE

(scratch->STOP) .
(think->talk->STOP) .

| ICONVERSE ITCH = (ITCH || CONVERSE) .

Possible traces as * scratch—~>think—>talk
* think—>scratch—~>talk

a result of action
f * think—>talk—>scratch

interleaving?

DM519 Concurrent Programming 12

Parallel Composition - Action Interleaving %’

scratch
think talk
ITCH m CONVERSE M
2 states scratch

3 states

Cartesian product?

CONVERSE_ITCH

/(0,0) 01) (02) (12) (1) or(1,0)

fr'om ITCH rom CONVERSE 2 x 3 states

DM519 Concurrent Programming 13

Parallel Composition - Algebraic Laws %’

Commutative: (P||Q) = (Q]| |P)

Associative: (P|] (Q] |IR)) P||Q) | |R)

(
P|lIQIIR).

(
(

Small example:

MALTHE = (climbTree->fall->MALTHE) .
OSKAR = (run->jump->OSKAR) .
| IMALTHE OSKAR = (MALTHE || OSKAR) .

LTS? Traces? Number of states?

DM519 Concurrent Programming 14

Modelling Interaction - Shared Actions %’

MAKEl = (make->ready->STOP). MAKE1l
El = ->use- - -
UsS (ready->use->STOP) synchronises
| IMAKE1 USE1 = (MAKE1 || USE1). with USE1 when

ready.

LTS? Traces? Number of states?

@ Shared Actions:

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modelled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes
that participate in the shared action.

DM519 Concurrent Programming 15

MOdeIIing InteraCtion - Example UN[VERS[TYOF&IERNDENMARK

MAKEl = (make->ready->STOP). 3 states
USE1l = (ready->use->STOP).

3 states
| IMAKE1 USEl = (MAKEl || USEl).

rnake ready <::>

readyl readyl lready

read
ﬂﬂﬂi, <::> Y 3 x 3 states?

use use use
No...!
make ready
— —>

DM519 Concurrent Programming 16

MOdeIIing InteraCtion - Example UNIVERSITYorﬁ:ERNDENMARK

MAKEl = (make->ready->STOP). 3 states
USEl = (ready->use->STOP).

3 states
| IMAKE1 USEl = (MAKEl || USEl).

"“_“‘ViQ 4

reddy | 4 states!

v
................ O e

may constrain
the overall
behaviour !

DM519 Concurrent Programming 17

Example .
UNIVERSITY OF ISOUTHERN DENMARK

P = (x ->y ->P). 2 states
Q@ = (¥ =>=x->0). 2 states
| IR = (P || Q).

LTS? Traces? Number of states?
P=(a->P | b ->P).
Q= (¢ -=> Q) + {a}.
| I1PQ = (P || Q).

LTS? Traces?

DM519 Concurrent Programming 18

MOdeIIing InteraCtion - Example UNIVERS[TYOFKERNDENMARK

MAKER
USER

(make->ready->MAKER) .
(ready->use->USER) .

| IMAKER USER = (MAKER || USER).

LTS? Traces?

rake ready rake

use use

Can we make sure the MAKER does not "get ahead of” the USER
: and if so, how?

DM519 Concurrent Programming 19

Modelling Interaction - Handshake %’

A handshake is an action acknowledged by another process:

MAKERvZ2 = (make->ready->used->MAKERVZ2) .
USERv2 = (ready->use->used->USERvV2) .
| IMAKER USERv2 = (MAKERv2 || USERV2).

make ready use

used

DM519 Concurrent Programming 20

Modelling Interaction - Multiple Processes %’

Multi-party synchronisation:

MAKE A = (makeA->ready->used->MAKE A) .
MAKE B = (makeB->ready->used->MAKE B) .
ASSEMBLE = (ready->assemble->used->ASSEMBLE) .
| | FACTORY = (MAKE A || MAKE B || ASSEMBLE) .
makeA
—p—
makeB makeA ready assemble

(

> makeB
used

DM519 Concurrent Programming 21

C o m pos ite P rocesses UNIVERSITY OF é:ERN DENMARK

A composite process is a parallel composition of primitive processes.
These composite processes can be used in the definition of further
compositions.

| IMAKERS = (MAKE A || MAKE B).
| |FACTORY = (MAKERS || ASSEMBLE) .
! | substitution of

def'n of MAKERS
| IFACTORY = ((MAKE A || MAKE B) || ASSEMBLE).

Further simplification? @ associativityl!

| IFACTORY = (MAKE A || MAKE B || ASSEMBLE).

DM519 Concurrent Programming 22

P rocess La be I I i n g UNIVERSITY OF KERI\I DENMARK

a:P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:
SWITCH = (on->o0ff->SWITCH).

| ITWO SWITCH = (a:SWITCH || b:SWITCH) .

LTS? (a:SWITCH)

a.on

a:SWITCH © a.0n

a.off

b.on

b.off a.off

DM519 Concurrent Programming 23

P rocess La be I I i n g UNIVERSITY OF KERI\I DENMARK

Create an array of instances of the switch process:

| | SWITCHES (N=3)

(forall[i:1..N] s[i] :SWITCH).

| |SWITCHES (N=3) = (s[i:1..N]:SWITCH).

DM519 Concurrent Programming 24

Process Labelling By A Set Of Prefix Labels %’

{a;,..,a}::P replaces every action label x in the alphabet of P
with the labels a,.x,...,a,.X.

Further, every transition (x -> X) in the definition of P is
replaced with the transitions ({a;.x,...,a,.x} -> X).

Process prefixing is useful for modelling shared resources:

USER

(acquire->use->release->USER) .

RESOURCE

(acquire->release->RESOURCE) .

| IRESOURCE SHARE.

(2:USER || b:USER || {a,b}QDRESOURCE).

DM519 Concurrent Programming 25

Process Prefix Labels For Shared ResourcesUNlVERS[TYOFﬁ:ERNDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (acquire->use->release->USER).
| IRESOURCE SHARE = (a:USER || b:USER || {a,b}::RESOURCE) .
b.acquire
a.acquire a.use b.acquire b.use a.acquire
a:USER @ b:USER {a,b}::RESOURCE ©
@ a.release
a.release b.release b.release

a.acquire

How does the model
ensure that the user that
acquires the resource is
the one to release it?

RESOURCE_SHARE

b.release

a.release

DM519 Concurrent Programming 26

Example

X = (x -> STOP).

|1SYS 1 =

{a,b} :X.

LTS? Traces?

Number of states?
{a...}:X creates one process per prefix

| |SYS 2 =

{a,b}: :X.

LTS? Traces?

Number of states?

UNIVERSITY OF [SOUTHERN DENMARK

SYS_1

{a,b}x

{a...}::X creates one process with all prefixes

DM519 Concurrent Programming

27

ACti o n Re I a be I I i n g UNIVERSITY OF ﬁ:ERN DENMARK

Relabelling functions are applied to processes to change the
names of action labels. The general form of the relabelling
function is:

/{newlabel,/oldlabel,, .. newlabel /oldlabel }.

Relabelling to ensure that composed processes
synchronise on particular actions:

CLIENT = (call->wait->continue->CLIENT).

SERVER

(request->service->reply->SERVER) .

DM519 Concurrent Programming 28

ACti o n Re I a be I I i n g UNIVERSITY OF é:ERN DENMARK

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER) .

C (CLIENT /{reply/wait}).

S = (SERVER /{call/request}).

lIC_S = (C || S).

C call reply S call service
SRS s G

continue reply
call service reply
@
continue

DM519 Concurrent Programming 29

Action Relabelling - Prefix Labels %’

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

SERVERv2 = (accept.request
->service->accept.reply->SERVERvV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTvZ2) .
| |CLIENT SERVERvZ = (CLIENTvZ || SERVERV2)

/{call/accept}.

DM519 Concurrent Programming 30

Action Hiding - Abstraction To Reduce Complexit

UNIVERSITY OF WOUTHERN DENMARK

When applied to a process P, the hiding operator \{ai,..,ax}
removes the action hames ai..ax from the alphabet of P and makes
these concealed actions "silent".

These silent actions are labelled tau.

Silent actions in different processes are not shared.

USER = (acquire->use->release->USER)
\ {use}.

N2

{

_4—
release

DM519 Concurrent Programming 31

Action Hiding - Abstraction To Reduce Complexit

UNIVERSITY OF UTHERN DENMARK

Sometimes it is more convenient to specify the set of labels to be
exposed....

When applied to a process P, the interface
operator @{ai,..,ax} hides all actions in the
alphabet of P not labelled in the set a:..ax.

USER = (acquire->use->release->USER)
@{acquire,release}.

N2

{

_4—
release

DM519 Concurrent Programming 32

Action Hiding

The following definitions are equivalent:

UNIVERSITY OF [SOUTHERN DENMARK

USER = (acquire->use->release->USER)
\ {use}.

USER = (acquire->use->release->USER)

@{acquire,release}.

acquire tau

DM519 Concurrent Programming

*‘ﬁ
release

Minimisation removes hidden
tau actions to produce an
LTS with equivalent
observable behaviour.

acquire
Q

release

33

Stru Ctu re D i ag ra m S UNIVERSITY OF KERN DENMARK

Poa Process P with
° alphabeft {a,b}.
m
P i C g Q Parallel Composition
X (O—X (PIIQ) / {m/a,m/b,c/d)
S Composite process
X X Y _
O—10 O a O C)—yC) I |S 4 (Xl |Y) @ {X,Y}

DM519 Concurrent Programming 34

Structure Diagrams %’

range T = 0..3
BUFF (in[i:T]->out[i] ->BUFF) .

We use structure diagrams

to capture the structure of TWOBUFF
a model expressed by the | a:BUFF oyt | PiBUFF
. . IN :
static combinators: O—0in outO Oin outO——=<
parallel composition,
relabelling and hiding.
| | TWOBUF = (a:BUFF || b:BUFF)
/{in/a.in, a.out/b.in, out/b.out}
@{in,out}.

DM519 Concurrent Programming

Stru Ctu re D i ag ra m s UNIVERSITY OF KERN DENMARK

CLIENT
SERVER

(call->wait->continue->CLIENT) .
(request->service->reply->SERVER) .

| ICLIENT SERVER = (CLIENT| | SERVER)
/{reply/wait,
call/request}.

Structure diagram for CLIENT SERVER ?

CLIENT cal call request SERVER

O continue wait reply reply service (I)

DM519 Concurrent Programming 36

Stru Ctu re D i ag ra m S UNIVERSITY OF KERN DENMARK

SERVERv2 = (accept.request
->service->accept.reply->SERVERvV2) .

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2) .
| |CLIENT SERVERvZ = (CLIENTv2 || SERVERV2)

/{call/accept}.

Structure diagram for CLIENT SERVERv2 ?

CLIENTV2 cal o—< L accept SERVERV?2

O continue service O

Simply use the shared prefix.

DM519 Concurrent Programming 37

StrUCture Diagrams - Resource Sharing UNIVERSITYorﬁ:ﬁRNDENMARK

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use->printer.release->USER).

| | PRINTER SHARE =
(2:USER || b:USER || {a,b}::printer:RESOURCE) .

Shared resources are shown as "rounded rectangles”:

PRINTER_SHARE
a:USER —
printer (
printer:
RESOURCE
(Hacquire
b:USER A release
printer

DM519 Concurrent Programming 38

UNIVERSITY OF ISOUTHERN DENMARK

DM519 Concurrent Programming 39

Threaddemo Model

UNIVERSITY OF [SOUTHERN DENMARK

OFF =

ON =

THREAD

= OFF,

(toggle->ON
| abort->STOP) ,

(toggle->OFF
| output->ON
| abort->STOP) .

| | THREAD DEMO

(a: THREAD

togzle

toggle

stop

%/’\

Qﬁ @

stop

b : THREAD)
/{stop/{a,b}.abort}.

Interpret:

a.toggle

THREAD DEMO

a.output

stop

a:T O

J

C

) b: T

bjogye

.output

DM519 Concurrent Programming

\J/

toggle, abort
as inputs;

output
as output

40

Threaddemo Code: Mythread THREAD_DEMO -

2i0p O b:T

al O 1

MyThread (String name) { super (name); this.on = false; }

class MyThread extends Thread ({
private boolean on;

public void toggle() { on = l'on; }
public void abort() { this.interrupt(); }

private void output() {
System.out.println(getName ()+"“: output”) ;

}

public void run() {

THREAD = OFF,

try {
while ('interrupted()) ({ OFF = (toggle->ON
if (on) output(); |abort->STOP) ,
sleep (500) ; ON = (toggle->OFF
} | output->0ON
} catch(Int’Exc’) ({} |abort->STOP) .

System.out.println(“Done!”) ;
| | THREAD DEMO =

(a:THREAD || b:THREAD)
/{stop/{a,b} .abort}.

1}

DM519 Concurrent Programming 41

b

Threaddemo Code: Threaddemo

THREAD DEMO

stop

al O O b:T
class ThreadDemo { l
public static void main (String[] args) {
MyThread a = new MyThread(“a”) ;
MyThread b = new MyThread(“b”) ;
a.start(); b.start();
while (true) { THREAD = OFF,
switch (readChar()) { OFF = (toggle->ON
case ‘a’: a.toggle():; | abort->STOP) ,
break;
case ‘b’: b.toggle() o= :zzggii:ig?
break; |abort->STOP) .
case ‘i’: stop(a,b);
return; | | THREAD DEMO =
} (a:THREAD || b:THREAD)
} /{stop/{a,b} .abort}.
}
private stop (MyThread a, MyThread b) {
a.abort() ;
b.abort () ;
}
}

DM519 Concurrent Programming 42

S u m m a ry UNIVERSITY OF ﬁ:mm DENMARK
® Concepts

® Concurrent processes and process interaction

® Models

® Asynchronous (arbitrary speed) & interleaving (arbitrary order).
®Parallel composition as a finite state process with action interleaving.
®Process interaction by shared actions.

®Process labelling and action relabelling and hiding.

® Structure diagrams

@®Practice

® Multiple threads in Java.

DM519 Concurrent Programming 43

