
DM519 Concurrent Programming

Chapter 5

Monitors &
Condition Synchronisation

controller

1

DM519 Concurrent Programming

Monitors & Condition Synchronisation

Concepts: monitors (and controllers):
 encapsulated data + access procedures +
 mutual exclusion + condition synchronisation +
 single access procedure active in the monitor
 nested monitors (“nested monitor problem”)

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
 wait(), notify() and notifyAll() for condition synchronisation
 single thread active in the monitor at a time

2

DM519 Concurrent Programming

Condition Synchronisation

3

DM519 Concurrent Programming

5.1 Condition Synchronisation (Car Park)

A controller is required to ensure:

 • cars can only enter when not full

 • cars can only leave when not empty

4

http://www.doc.ic.ac.uk/~jnm/book/book_applets/CarPark.html

DM519 Concurrent Programming

Car Park Model (Actions and Processes)

♦Actions of interest:
•arrive

•depart

♦Processes:

•Arrivals

•Departures

•Carpark (Control)

5

DM519 Concurrent Programming

Car Park Model (Structure Diagram)

♦Actions of interest:
•arrive

•depart

♦Identify processes:

•Arrivals

•Departures

•Carpark (Control)

ARRIVALS CARPARK
(CONTROL)

DEPARTURESarrive depart

CARPARK

6

DM519 Concurrent Programming

Car Park Model (FSP)

Guarded actions are used to control arrive and depart

ARRIVALS = (arrive -> ARRIVALS).

DEPARTURES = (depart -> DEPARTURES).

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =
 (when (spaces>0) arrive -> SPACES[spaces-1]
 |when (spaces<CAPACITY) depart -> SPACES[spaces+1]).

||CARPARK = (ARRIVALS || DEPARTURES || CONTROL(4)).

LTS?

ARRIVALS CARPARK

(CONTROL)
DEPARTURESarrive depart

CARPARK

What if we remove ARRIVALS and DEPARTURES?

7

DM519 Concurrent Programming

Car Park Program

♦ Model:

♦all entities are processes interacting via shared actions

♦ Implementation:

 we need to identify threads and monitors:

♦thread - active entity which initiates (output) actions

♦monitor - passive entity which responds to (input) actions.

For the carpark?
• Arrivals:
• Departures:
• Control:

active => thread
active => thread
passive => monitor

8

DM519 Concurrent Programming

Car Park Program
(Interesting part of Class Diagram)

Arrivals Departures

Runnable

Control
arrive()
depart()

carparkcarpark

Active
(thread)

Active
(thread)

Passive (monitor)

9

DM519 Concurrent Programming

public static void main(String[] args) {
 Control c = new Control(CAPACITY);
 arrivals = new Thread(new Arrivals(c));
 departures = new Thread(new Departures(c));
 arrivals.start();
 departures.start();
}

Car Park Program - Main

The main() method creates: 
 • Control monitor  
 • Arrivals thread  
 • Departures thread

The Control is shared by the Arrivals and Departures threads

Arrivals Departures

Runnable

Control
arrive()
depart()

carparkcarpark

10

DM519 Concurrent Programming

Car Park Program - Arrivals

class Arrivals implements Runnable {
 Control carpark;

 Arrivals(Control c) { carpark = c; }

 public void run() {
 try {
 while(true) {
 Thread.sleep(...);
 carpark.arrive();
 }
 } catch (InterruptedException _) {}
 }
}

How do we implement the Carpark Controller’s control?

Would like to  
somehow block  
Arrivals thread  
here…

… similar for Departures (calling carpark.depart())

Where should we do the “blocking”?

ARRIVALS = (arrive -> ARRIVALS).

11

DM519 Concurrent Programming

Control Monitor

class Control {
 static final int CAPACITY;
 int spaces;

 Control(int n) {
 CAPACITY = spaces = n;
 }

 void arrive() {
 ... --spaces; ...
 }

 void depart() {
 ... ++spaces; ...
 }
}

Condition  
synchronisation:

Block, if full?  
¬(spaces>0)

Block, if empty?  
¬(spaces < CAPACITY)

Mutual exclusion ~
synchronized

Encapsulation  
~ protected

protected

synchronized

synchronized

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =
 (when(spaces>0) arrive -> SPACES[spaces-1]
 |when(spaces<CAPACITY) depart -> SPACES[spaces+1]).

protected

12

DM519 Concurrent Programming

Condition Synchronisation in Java

Java provides one thread wait queue per object  
(not per class).

public final void wait() throws InterruptedException;

public final void notify();

public final void notifyAll();

Waits to be notified ; 
Releases the synchronisation lock associated with the object.
 

When notified, the thread must reacquire the synchronisation lock.

 Wakes up (notifies) thread(s) waiting on the object’s queue.

Object has the following methods:

13

DM519 Concurrent Programming

Condition Synchronisation in Java (enter/exit)

A thread:
• Enters a monitor when a thread acquires the lock  
 associated with the monitor;
• Exits a monitor when it releases the lock.

Thread A Thread B

wait()
notify()

Monitor

data

Wait() causes the thread to exit the monitor,
permitting other threads to enter the monitor

14

DM519 Concurrent Programming

monitor lock

wait()

Monitor

data

wait

Thread C

Thread E
Thread B

Thread F

Thread A

notify()

Thread B

Thread F
Thread E

Thread A

Thread C

Thread A

15

DM519 Concurrent Programming

Condition Synchronisation in FSP and Java

FSP: when (cond) action -> NEWSTATE

synchronized void action() throws Int’Exc’ {
 while (!cond) wait();
 // modify monitor data
 notifyAll();
}

The while loop is necessary to re-test the condition cond to
ensure that cond is indeed satisfied when it re-enters the
monitor.

notifyAll() is necessary to awaken other thread(s) that may be
waiting to enter the monitor now that the monitor data has been
changed.

16

 if

DM519 Concurrent Programming

CarParkControl - Condition Synchronisation

class Control {
 protected static final int CAPACITY;
 protected int spaces;

 synchronized void arrive() throws Int’Exc’ {
 while (!(spaces>0)) wait();
 --spaces;
 notifyAll();
 }

 synchronized void depart() throws Int’Exc’ {
 while (!(spaces<CAPACITY)) wait();
 ++spaces;
 notifyAll();
 }
}

Would it be sensible here to use
notify() rather than notifyAll()?

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =  
 (when(spaces>0) arrive -> SPACES[spaces-1]
 |when(spaces<CAPACITY) depart -> SPACES[spaces+1]).

17

DM519 Concurrent Programming

More about
Object.notify() and Object.notifyAll()

18

notify() can be used instead of notifyAll() only
when both of these conditions hold:

Uniform waiters. Only one condition predicate and
each thread executes the same logic upon returning
from wait(); and

One-in, one-out. A notification enables at most
one thread to proceed.

Prevailing wisdom: use notifyAll() in preference to
single notify() when you are not sure.

DM519 Concurrent Programming

Models to Monitors - Guidelines

• Active entities (that initiate actions) 
 are implemented as threads.

• Passive entities (that respond to actions) 
 are implemented as monitors.

Each guarded action in the model of a monitor is implemented
as a synchronized method which uses a while loop and wait() to
implement the guard.

The while loop condition is the negation of the model guard
condition.

Changes in the state of the monitor are signalled to waiting
threads using notifyAll() (or notify()).

19

DM519 Concurrent Programming

Semaphores

20

DM519 Concurrent Programming

5.2 Semaphores

Semaphores are widely used for dealing with  
inter-process synchronisation in operating systems.

s.down(): when (s>0) do decrement(s);

s.up(): increment(s);

Semaphore s : integer var that can take only non-negative values.

Usually implemented as blocking wait:

s.down(): if (s>0) then decrement(s);
 else block execution of calling process

s.up(): if (processes blocked on s) then awake one of them
 else increment(s);

Aka. “P” ~ Passern

Aka. “V” ~ Vrijgeven

21

http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN

DM519 Concurrent Programming

Modelling Semaphores

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N], // N initial value
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]),
SEMA[Max+1] = ERROR.

To ensure analysability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard
this as an ERROR.

LTS?

What if we omit the last line above?

22

DM519 Concurrent Programming

Modelling Semaphores

Action down is only accepted when value (v) of the semaphore
is greater than 0.

Action up is not guarded.

Trace to a violation:
 up à up à up à up

23

DM519 Concurrent Programming

Semaphore Demo - Model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP
 || {p[1..3]}::mutex:SEMAPHORE(1)).

Three processes p[1..3] use a shared semaphore mutex to
ensure mutually exclusive access (action “critical”) to some
resource.

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?

SEMAPHORE(N=0) = SEMA[N], // N initial value
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]),

24

DM519 Concurrent Programming

Semaphore Demo - Model

25

DM519 Concurrent Programming

Semaphores in Java

public class Semaphore {
 protected int value;

 public Semaphore (int n) { value = n; }

 synchronized public void down() throws Int’Exc’ {
 while (!(value > 0)) wait();
 --value;
 notifyAll();
 }

 synchronized public void up() {
 ++value;
 notifyAll();
 }
}

Do we need notifyAll() here?

SEMA[v:Int] = (when(v>0) down->SEMA[v-1]  
 | up->SEMA[v+1]),

…what about here?

26

DM519 Concurrent Programming

SEMADEMO Display

27

http://www.doc.ic.ac.uk/~jnm/book/book_applets/SemaDemo.html

DM519 Concurrent Programming

SEMADEMO Program - MutexLoop

class MutexLoop implements Runnable {
 Semaphore mutex; // shared semaphore

 MutexLoop (Semaphore sem) { mutex=sem; }

 public void run() {
 try {
 while(true) {
 // non-critical actions
 mutex.down(); // acquire
 // critical actions
 mutex.up(); // release
 }
 } catch(InterruptedException _) {}
 }
}

However (in practice), semaphore is a low-level mechanism often used
in implementing higher-level monitor constructs.

LOOP = (mutex.down->critical->mutex.up->LOOP).

28

DM519 Concurrent Programming

Producer / Consumer

29

DM519 Concurrent Programming

5.3 Producer / Consumer

A bounded buffer consists of a fixed number of slots.

Items are put into the buffer by a producer process and removed
by a consumer process:

≈ Car Park Example!

30

http://www.doc.ic.ac.uk/~jnm/book/book_applets/BoundedBuffer.html

DM519 Concurrent Programming

Producer / Consumer
- a Data-Independent Model

PRODUCER BUFFER CONSUMERput get

BOUNDEDBUFFER

The behaviour of BOUNDEDBUFFER is independent of the
actual data values, and so can be modelled in a data-independent
manner (i.e., we abstract away the letters).

31

LTS?

DM519 Concurrent Programming

Producer / Consumer

PRODUCER = (put->PRODUCER).

CONSUMER = (get->CONSUMER).

BUFFER(SIZE=5) = COUNT[0],
COUNT[count:0..SIZE] =
 (when (count<SIZE) put -> COUNT[count+1]
 |when (count>0) get -> COUNT[count-1]).

||BOUNDEDBUFFER =
 (PRODUCER || BUFFER || CONSUMER).

PRODUCER BUFFER CONSUMER
put get

BOUNDEDBUFFER

32

DM519 Concurrent Programming

Bounded Buffer Program - Buffer Monitor

class BufferImpl<E> implements Buffer<E> {
 protected E[] queue;
 protected int in, out, count, SIZE;
 …
 synchronized void put(E o) throws Int’Exc’ {
 while (!(count<SIZE)) wait();
 queue[in] = o;
 count++;
 in = (in+1) % SIZE;
 notifyAll();
 }

public interface Buffer<E> {
 public void put(E o) throws InterruptedException;
 public E get() throws InterruptedException;
}

BUFFER(SIZE=5) = COUNT[0],
COUNT[count:0..SIZE] =
 (when (count<SIZE) put -> COUNT[count+1]
 |when (count>0) get -> COUNT[count-1]).

33

if(count == 1)

Can we use notify()?

DM519 Concurrent Programming

Similarly for get()

 …
 synchronized E get() throws Int’Exc’ {
1. while (!(count>0)) wait();
2. E obj = queue[out];
 < 2½. queue[out] = null; // WHY(?)
3. count--;
4. out = (out+1) % SIZE;
5. notifyAll();
6. return obj;
 }

if(count == queue.length-1)

BUFFER(SIZE=5) = COUNT[0],
COUNT[count:0..SIZE] =
 (when (count<SIZE) put -> COUNT[count+1]
 |when (count>0) get -> COUNT[count-1]).

34

public interface Buffer<E> {
 public void put(E o) throws InterruptedException;
 public E get() throws InterruptedException;
}

DM519 Concurrent Programming

Producer Process

class Producer implements Runnable {
 Buffer<Character> buf;
 String alpha = "abcdefghijklmnopqrstuvwxyz";

 Producer(Buffer<Character> b) { buf = b; }

 public void run() {
 try {
 int i = 0;
 while(true) {
 Thread.sleep(...);
 buf.put(new Character(alpha.charAt(i)));
 i=(i+1) % alpha.length();
 }
 } catch (InterruptedException _) {}
 }
}

Similar, Consumer
calls buf.get()

PRODUCER = (put->PRODUCER).

35

DM519 Concurrent Programming

The Nested Monitor Problem

36

DM519 Concurrent Programming

Suppose that, instead of using the count variable and condition
synchronisation, we instead use 2 semaphores full and empty to
reflect the state of the buffer:

5.4 Nested Monitors (Semaphores)

class SemaBuffer implements Buffer {
 protected Object queue[];
 protected int in, out, count, SIZE;
 Semaphore empty; // block put appropriately
 Semaphore full; // block get appropriately

 SemaBuffer(int s) {
 SIZE = s;
 in = out = count = 0;
 queue = new Object[SIZE];
 empty = new Semaphore(SIZE);
 full = new Semaphore(0);
 }

37

DM519 Concurrent Programming

Nested Monitors
Java Program

synchronized public void put(E o) throws Int’Exc’ {
 empty.down();
 queue[in] = o;
 count++;
 in = (in+1) % SIZE;
 full.up();
}

synchronized public E get() throws Int’Exc’ {
 full.down();
 E o = queue[out];
 queue[out] = null;
 count--;
 out = (out+1) % SIZE;
 empty.up();
 return o;
}

full is decremented by a get, 
which is blocked if full is zero,
i.e., if the buffer is empty.

Does this behave as desired?

empty is decremented during a put,
which is blocked if empty is zero,
i.e., no spaces are left.

38

DM519 Concurrent Programming

PRODUCER = (put -> PRODUCER).

CONSUMER = (get -> CONSUMER).

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (when(v>0) down -> SEMA[v-1]
 | up -> SEMA[v+1]).

BUFFER = (put -> empty.down -> full.up -> BUFFER
 |get -> full.down -> empty.up -> BUFFER).

||BOUNDEDBUFFER =
 (PRODUCER || BUFFER || CONSUMER
 || empty:SEMAPHORE(5)
 || full:SEMAPHORE(0)).

Nested Monitors Model
synchronized public void put(E o) throws Int’Exc’ {
 empty.down();
 buf[in] = o;
 count++;
 in = (in+1) % size;
 full.up();
}

39

Does this behave as desired?

DM519 Concurrent Programming

LTSA analysis predicts a DEADLOCK:
Composing
 potential DEADLOCK
...
Trace to DEADLOCK:
 get

Nested Monitors

40

Looking at BUFFER: 
After get the next action is 
full.down (blocks).

We cannot do put (and unblock full), 
since we have the “semaphore” for BUFFER.

This situation is known as the nested monitor problem!

BUFFER = (put -> empty.down -> full.up -> BUFFER
 |get -> full.down -> empty.up -> BUFFER).

DM519 Concurrent Programming

full

empty

synchronized public E get()
 throws InterruptedException{
 full.down(); // if no items, block!
 ...
 }

get down

wait

fullfull

put

buffer

41

Nested Monitor Problem

DM519 Concurrent Programming

The only way to avoid it in Java is by careful design :

Nested Monitors - Revised Bounded Buffer
Program

In this example, the deadlock can be removed by ensuring that
the monitor lock for the buffer is not acquired until after
semaphores are decremented.

synchronized public void put(E o)  
 throws Int’Exc’ {
 empty.down();
 queue[in] = o;
 count++;
 in = (in+1) % SIZE;
 full.up();
}

public void put(E o) throws Int’Exc’ {
 empty.down();
 synchronized (this) {
 queue[in] = o;
 count++;
 in = (in+1) % SIZE;
 }
 full.up();
}

42

DM519 Concurrent Programming

The semaphore actions have been moved outside the monitor, 
i.e., conceptually, to the producer and consumer:

BUFFER = (put -> BUFFER
 |get -> BUFFER).

PRODUCER = (empty.down -> put -> full.up -> PRODUCER).
CONSUMER = (full.down -> get -> empty.up -> CONSUMER).

Nested Monitors
- Revised Bounded Buffer Model

Does this behave as desired?

No deadlocks/errors

43

http://www.doc.ic.ac.uk/~jnm/book/book_applets/FixedNestedMonitor.html

DM519 Concurrent Programming

5.5 Monitor invariants

An invariant for a monitor is an assertion concerning the variables
it encapsulates. This assertion must hold whenever there is no
thread executing inside the monitor, i.e., on thread entry to and
exit from a monitor .

INV(CarParkControl): 0 ≤ spaces ≤ CAPACITY

INV(Semaphore): 0 ≤ value

INV(Buffer): 0 ≤ count ≤ SIZE
 and 0 ≤ in < SIZE
 and 0 ≤ out < SIZE
 and in = (out + count) % SIZE

Like normal invariants, but must also hold when lock is released (wait)!

44

DM519 Concurrent Programming

Summary

45

Concepts: monitors (and controllers):
 encapsulated data + access procedures +
 mutual exclusion + condition synchronisation +
 single access procedure active in the monitor
 nested monitors (“nested monitor problem”)

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
 wait(), notify() and notifyAll() for condition synchronisation
 single thread active in the monitor at a time

