
DM519 Concurrent Programming

Chapter 6

Deadlock

!1

DM519 Concurrent Programming

But First:
Repetition

Monitors and 
Condition

Synchronisation

!2

DM519 Concurrent Programming

Monitors & Condition Synchronisation

Concepts: monitors:
 encapsulated data + access procedures +
 mutual exclusion + condition synchronisation +
 single access procedure active in the monitor
 nested monitors
!
Models: guarded actions
!
Practice: private data and synchronized methods (exclusion).
 wait(), notify() and notifyAll() for condition synch.
 single thread active in the monitor at a time

!3

DM519 Concurrent Programming

Wait(), Notify(), And Notifyall()

Thread A Thread B

wait()
notify()

Monitor

data

Wait() causes the thread to exit the monitor,
permitting other threads to enter the monitor

public final void wait() throws InterruptedException;

public final void notify();

public final void notifyAll();

!4

DM519 Concurrent Programming

Condition Synchronisation (In Java)

class CarParkControl {
 protected int spaces, capacity;
!
 synchronized void arrive()  
 throws Int’Exc’ {
 while (!(spaces>0)) wait();
 --spaces;
 notifyAll();
 } !
 synchronized void depart()
 throws Int’Exc’ {
 while (!(spaces<capacity)) wait();
 ++spaces;
 notifyAll();
} }

CONTROL(CAPACITY=4) = SPACES[CAPACITY],
SPACES[spaces:0..CAPACITY] =
 (when(spaces>0) arrive -> SPACES[spaces-1]
 |when(spaces<CAPACITY) depart -> SPACES[spaces+1]).

!5

notify() instead of notifyAll() ?

1. Uniform waiters - everybody

waits on the same condition

2. One-in, one-out

!
What goes wrong with notify

and 8xDepartures, 5xArrivals?

DM519 Concurrent Programming

Semaphores

Semaphores are widely used for dealing with inter-process
synchronisation in operating systems.

Semaphore s : integer var that can take only non-neg. values.

sem.down(); // decrement (block if counter = 0)

sem.up(); // increment counter (allowing one blocked thread to pass)

!6

http://images.google.com/imgres?imgurl=www.andypope.info/charts/trafficlight.png&imgrefurl=http://www.andypope.info/charts/trafficlight.htm&h=340&w=284&sz=21&tbnid=kZ0i5EeBnsAJ:&tbnh=114&tbnw=96&prev=/images%253Fq%253Dtraffic%252Blight%2526start%253D100%2526hl%253Dda%2526lr%253D%2526ie%253DUTF-8%2526sa%253DN

DM519 Concurrent Programming

LTSA’s (analyse safety) predicts a possible DEADLOCK:

This situation is known as the nested monitor problem.

Composing
 potential DEADLOCK
 States Composed: 28 Transitions: 32 in 60ms
 Trace to DEADLOCK:
 get

Nested Monitors - Bounded Buffer Model

!7

DM519 Concurrent Programming

Chapter 6

Deadlock

!8

DM519 Concurrent Programming

Deadlock

Concepts: system deadlock (no further progress)
 4 necessary & sufficient conditions
!
Models: deadlock - no eligible actions
!
Practice: blocked threads

Aim: deadlock avoidance - to design systems
where deadlock cannot occur.

!9

DM519 Concurrent Programming

Necessary & Sufficient Conditions

Necessary condition:
!
 

Sufficient condition:
!
!
!
Necessary & sufficient condition:

P necessary for Q:
P ⇐ Q

P sufficient for Q:
P ⇒ Q

P necessary & sufficient for Q:
(P ⇐ Q) ∧ (P ⇒ Q) ≡ P ⇔ Q

!10

P: The sun is shining  
Q: I get sunlight on my beer

P ⇐ Q only.

DM519 Concurrent Programming

Deadlock: 4 Necessary And Sufficient Conditions

1. Mutual exclusion condition (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual  
 exclusion.

2. Hold-and-wait condition (aka. “Incremental acquisition”):

 processes hold on to resources already allocated to them while waiting  
 to acquire additional resources.

3. No preemption condition:

 once acquired by a process, resources cannot be “pre-empted” (forcibly  
 withdrawn) but are only released voluntarily.

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process  
 holds a resource which its successor in the cycle is waiting to acquire.

!11

DM519 Concurrent Programming

Wait-For Cycle

A

B

Has A awaits B

C

Has B awaits C

D

Has C awaits D

E

Has D awaits E

Has E awaits A

!12

DM519 Concurrent Programming

6.1 Deadlock Analysis - Primitive Processes

♦ Deadlocked state is one with no outgoing transitions

♦ In FSP: (modelled by) the STOP process

♦Analysis using LTSA: Trace to DEADLOCK:
 north
 north

Shortest path to DEADLOCK:

!13

MOVE = (north->(south->MOVE|north->STOP)).

DM519 Concurrent Programming

Deadlock Analysis - Parallel Composition

♦ In practice, deadlock arises from  
 parallel composition of interacting  
 processes.

RESOURCE = (get-> put-> RESOURCE).
!
P = (printer.get-> scanner.get-> copy-> printer.put-> scanner.put-> P).
!
Q = (scanner.get-> printer.get-> copy-> scanner.put-> printer.put-> Q).
!
||SYS = (p:P || q:Q || {p,q}::printer:RESOURCE ||
{p,q}::scanner:RESOURCE).

printer:
RESOURCE
get
put

SYS

scanner:
RESOURCE
get
put

p:P
printer

scanner

q:Q
printer

scanner

b Avoidance...

P = (x -> y -> P).
Q = (y -> x -> Q).
||D = (P || Q).

Trace to DEADLOCK:
 p.printer.get
 q.scanner.get

!14

DM519 Concurrent Programming

Recall The 4 Conditions

1. Mutual exclusion condition (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual  
 exclusion.

2. Hold-and-wait condition (aka. “Incremental acquisition”):

 processes hold on to resources already allocated to them while waiting  
 to acquire additional resources.

3. No preemption condition:

 once acquired by a process, resources cannot be “pre-empted” (forcibly  
 withdrawn) but are only released voluntarily.

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process  
 holds a resource which its successor in the cycle is waiting to acquire.

!15

DM519 Concurrent Programming

Deadlock Analysis – Avoidance (#1 ?)

♦Ideas?

♦...avoid shared resources (used under mutual exclusion)

!
♦No shared resources (buy two printers and two scanners)

1. Mutual exclusion condition (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual  
 exclusion.

Deadlock? Scalability? J L
!16

DM519 Concurrent Programming

Deadlock Analysis – Avoidance (#2 ?)

♦Only one “mutex” lock for both scanner and printer:

Deadlock? Efficiency/Scalability?

2. Hold-and-wait condition (aka. “Incremental acquisition”):
 

 processes hold on to resources already allocated to them while waiting to  
 acquire additional resources.

LOCK = (acquire-> release-> LOCK). !
P = (scanner_printer.acquire->
 printer.get->
 scanner.get->
 copy->
 scanner.put->
 printer.put->
 scanner_printer.release-> P).

J L
!17

DM519 Concurrent Programming

Deadlock Analysis – Avoidance (#3 ?)

♦Force release (e.g., through timeout or arbiter):
P = (printer.get-> GETSCANNER),
GETSCANNER = (scanner.get-> copy-> printer.put-> scanner.put-> P
 |timeout -> printer.put-> P).
!
Q = (scanner.get-> GETPRINTER),
GETPRINTER = (printer.get-> copy-> printer.put-> scanner.put-> Q
 |timeout -> scanner.put-> Q).

Progress?

3. No pre-emption condition: 
 

 once acquired by a process, resources cannot be pre-empted (forcibly  
 withdrawn) but are only released voluntarily.

Deadlock? J L
!18

DM519 Concurrent Programming

Deadlock Analysis – Avoidance (#4 ?)

♦Acquire resources in the same order:

Scalability/Progress/…?

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process  
 holds a resource which its successor in the cycle is waiting to acquire.

Deadlock? J J

 printer.get->
 scanner.get->
 copy-> printer.put-> scanner.put-> P). !
 printer.get->
 scanner.get->
 copy-> printer.put-> scanner.put-> Q).

General solution: "sort" resource acquisitions

BUT Sort by... ...what?

P = (

Q = (

!19

DM519 Concurrent Programming

6.2 Dining Philosophers

Five philosophers sit around a circular
table. Each philosopher spends his life
alternately thinking and eating. In the
centre of the table is a large bowl of
spaghetti. A philosopher needs two forks
to eat a helping of spaghetti.

0

1

23

4
0

1

2

3

4

One fork is placed between each
pair of philosophers and they agree that each
will only use the fork to his immediate right and
left.

!20

DM519 Concurrent Programming

Dining Philosophers - Model Structure Diagram

Each FORK is a
shared resource
with actions get and
put.

When hungry, each
PHIL must first get
his right and left
forks before he can
start eating.

!21

DM519 Concurrent Programming

Dining Philosophers - Model

const N = 5
!
FORK = (get-> put-> FORK).  
!
PHIL = (sit ->
 right.get ->  
 left.get ->
 eat ->
 left.put ->
 right.put ->
 arise -> PHIL).

!
||DINING_PHILOSOPHERS =

 forall [i:0..N-1] (phil[i]:PHIL ||

 FORK).

Can this system deadlock?

0

1

23

4
0

1

2

3

4

{ phil[i].left, phil[((i-1)+N)%N].right }::

!22

DM519 Concurrent Programming

Dining Philosophers - Model Analysis

This is the situation where all the
philosophers become hungry at the
same time, sit down at the table and
each philosopher picks up the fork to
his right.

The system can make no further
progress since each philosopher is
waiting for a left fork held by his
neighbour (i.e., a wait-for cycle
exists)!

Trace to DEADLOCK:
 phil.0.sit
 phil.0.right.get
 phil.1.sit
 phil.1.right.get
 phil.2.sit
 phil.2.right.get
 phil.3.sit
 phil.3.right.get
 phil.4.sit
 phil.4.right.get

!23

DM519 Concurrent Programming

Dining Philosophers

Deadlock is easily
detected in our
model.

!

How easy is it to
detect a potential
deadlock in an
implementation?

!24

DM519 Concurrent Programming

Dining Philosophers - Implementation In Java

♦Forks: shared  
 passive entities 
 (implement as  
 monitors)

♦Philosophers:  
 active entities 
 (implement as  
 threads)

!25

DM519 Concurrent Programming

Dining Philosophers – Fork (Monitor)

class Fork {
 private PhilCanvas display;
 private boolean taken = false;
!
 synchronized void get() throws Int’Exc’ {
 while (taken) wait(); // cond. synch. (!)
 taken = true;
 display.setFork(identity, taken);
 }
!
 synchronized void put() {
 taken = false;
 display.setFork(identity, taken);
 notify(); // cond. synch. (!)
} }

taken encodes the
state of the fork

FORK = (get->
 put->
 FORK).

FORK = (FORK[FALSE],
FORK[taken:B] (when (!taken) get-> FORK[TRUE]
 |when (taken) put-> FORK[FALSE]).

get

put

≡

Not needed

(if we always

"get before put")

!26

DM519 Concurrent Programming

Dining Philosophers – Philosopher (Thread)

class Philosopher extends Thread {
 Fork left, right;
 public void run() {
 try {
 while (true) {
 view.setPhil(identity,view.SIT);
 sleep(controller.sitTime());
 right.get();
 view.setPhil(identity,view.GOTRIGHT);
 sleep(500); // constant pause!
 left.get();
 view.setPhil(identity,view.EATING);
 sleep(controller.eatTime());
 left.put();
 right.put();
 view.setPhil(identity,view.ARISE);
 sleep(controller.ariseTime());
 }
 } catch (InterruptedException _) {}
} }

PHIL = (sit -> right.get -> left.get -> eat -> left.put -> right.put -> arise -> PHIL).

!27

DM519 Concurrent Programming

Dining Philosophers – Main Applet

for (int i=0; i<N; i++)
 phil[i] =
 new Philosopher(this, i, fork[(i-1+N)%N], fork[i]);

The applet’s start() method creates (an array of) shared Fork monitors…:

for (int i=0; i<N; i++) fork[i] = new Fork(display, i);

…and (an array of) Philosopher threads (with refs to forks):

left right

||DINING_PHILOSOPHERS =
 forall [i:0..N-1] (phil[i]:PHIL ||
 { phil[i].left, phil[((i-1)+N)%N].right }::FORK).

...and start all Philosopher threads:
for (int i=0; i<N; i++) phil[i].start();

!28

DM519 Concurrent Programming

Dining Philosophers

To ensure deadlock occurs
eventually, the slider
control may be moved to
the left. This reduces the
time each philosopher
spends thinking and eating.

This "speedup" increases
the probability of
deadlock occurring.

!29

DM519 Concurrent Programming

Deadlock-Free Philosophers

Deadlock can be avoided by ensuring that a wait-for cycle cannot exist.

Introduce an asymmetry into definition of philosophers.

Use the identity ‘i’ of a philosopher to make even numbered
philosophers get their left forks first, odd their right first.

How?

PHIL[i:0..N-1] =
 (when (i%2==0) sitdown-> left.get ->...-> PHIL
 |when (i%2==1) sitdown-> right.get->...-> PHIL).

How does this solution compare to 
the “sort-shared-acquisitions” idea?

Other strategies?
!30

1. Mutual exclusion condition 

2. Hold-and-wait condition 

3. No pre-emption condition 

4. Circular-wait condition

DM519 Concurrent Programming

Maze Example - Shortest Path To “Deadlock”

We can exploit the shortest path trace produced by the deadlock
detection mechanism of LTSA to find the shortest path out of a
maze to the STOP process!

We first model the
MAZE.

Each position is
modelled by the moves
that it permits. The
MAZE parameter gives
the starting position.

eg. MAZE(Start=8) = P[Start],
 P[0] = (north->STOP|east->P[1]),...

!31

DM519 Concurrent Programming

Maze Example - Shortest Path To “Deadlock”

||GETOUT = MAZE(7). Shortest path escape
trace from position 7 ?

Trace to
DEADLOCK:

 east
 north
 north
 west
 west
 north

!32

DM519 Concurrent Programming

Summary
uConcepts

l deadlock (no further progress)

l 4x necessary and sufficient conditions:

1. Mutual exclusion condition

2. Hold-and-wait condition

3. No pre-emption condition

4. Circular-wait condition

uModels

l no eligible actions (analysis gives shortest path trace)

uPractice

l blocked threads

Aim - deadlock avoidance:

 “Break at least one of  
 the deadlock conditions”.

!33

