
DM519 Concurrent Programming

Chapter 10

Message Passing

!1

DM519 Concurrent Programming

Absence Of Shared Memory

In previous lectures interaction between threads has been via
shared memory

– In Java, we refer to shared objects.
– Usually encapsulate shared memory in Monitors.

!
In a distributed setting there is no shared memory

– Communication is achieved via passing messages between
concurrent threads.

– Same message passing abstraction can also be used in non-
distributed settings.

!2

DM519 Concurrent Programming

Message Passing

Concepts: synchronous message passing - channel
 asynchronous message passing - port
 - send and receive / selective receive
 rendezvous bidirectional comm. - entry
 - call and accept ... reply
!
Models: channel : relabelling, choice & guards
 port : message queue, choice & guards
 entry : port & channel
!
Practice: distributed computing (disjoint memory)
 threads and monitors (shared memory)

!3

DM519 Concurrent Programming

♦ send(e,c) - send e to
channel c. The sender is
blocked until the message is
received from the channel.

10.1 Synchronous Message Passing - Channel

Channel c
Sender

send(e,c)
Receiver
v=receive(c)

♦ v = receive(c) - receive a
value into local variable v from
channel c. The calling process is
blocked until a message is sent
to the channel.

Channel has no buffering

one-to-one

!4

Corresponds to “v = e”

DM519 Concurrent Programming

Synchronous Message Passing - Applet
A sender
communicates with a
receiver using a
single channel.

The sender sends a
sequence of integer
values from 0 to 9
and then restarts at
0 again.

Channel<Integer> chan = new Channel<Integer>();
tx.start(new Sender(chan,senddisp));
rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvasInstances of ThreadPanel

!5

DM519 Concurrent Programming

Synchronous Message Passing In Java

Java has no built in message passing primitives
– Unlike Occam, Erlang, or Ada.

!
Can still do message passing in Java, but it’s clunky:

– Encapsulate message passing abstractions in monitor Channel:

!6

class Channel<T> extends Selectable {
public synchronized void send(T v)
throws InterruptedException{...}

!
public synchronized T receive() {...}

}

DM519 Concurrent Programming

Java Implementation - Channel

Channel is a
monitor that has
synchronized
access methods
for send and
receive.

public class Channel<T> extends Selectable {
 T chan_ = null; !
 public synchronized void send(T v)
 throws InterruptedException {
 chan_ = v;
 signal();
 while (chan_ != null) wait();
 } !
 public synchronized T receive()
 throws InterruptedException {
 block(); clearReady(); // part of Selectable
 T tmp = chan_; chan_ = null;
 notifyAll(); // could be notify()
 return(tmp);
 }
}

Selectable is
described later.

!7

DM519 Concurrent Programming

Java Implementation - Sender
class Sender implements Runnable {
 private Channel<Integer> chan;
 private SlotCanvas display;
 Sender(Channel<Integer> c, SlotCanvas d)
 {chan=c; display=d;} !
 public void run() {
 try { int ei = 0;

 while(true) {
 display.enter(String.valueOf(ei));
 ThreadPanel.rotate(12);
 chan.send(new Integer(ei));
 display.leave(String.valueOf(ei));
 ei=(ei+1)%10; ThreadPanel.rotate(348);
 }

 } catch (InterruptedException e){}
 }
}

!8

DM519 Concurrent Programming

Java Implementation - Receiver
class Receiver implements Runnable {
 private Channel<Integer> chan;
 private SlotCanvas display;
 Receiver(Channel<Integer> c, SlotCanvas d)
 {chan=c; display=d;} !
 public void run() {
 try { Integer v=null;

 while(true) {
 ThreadPanel.rotate(180);
 if (v!=null) display.leave(v.toString());
 v = chan.receive();
 display.enter(v.toString());
 ThreadPanel.rotate(180);
 }

 } catch (InterruptedException e){}
 }
}

!9

DM519 Concurrent Programming

Model

range M = 0..9 // messages with values up to 9
!
SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).
!
RECEIVER = (chan.receive[v:M]-> RECEIVER).
!
 // relabeling to model synchronization
||SyncMsg = (SENDER || RECEIVER)
 /{chan/chan.{send,receive}}. LTS?

How could this be
modeled directly
without the need for
relabeling?

message operation FSP model

send(e,chan) ?

v = receive(chan) ?

chan.[e]

chan.[v:M]

!10

DM519 Concurrent Programming

 Selective Receive

Channels
c1
c2
cn

How
should we deal
with multiple
channels?

Sender
send(e,c)Sender
send(e,c)Sender[n]

send(en,cn)

 select
 when G1 and v1=receive(chan1) => S1;
or
 when G2 and v2=receive(chan2) => S2;
or
 …
or
 when Gn and vn=receive(chann) => Sn;
end

Select
statement...

How would we model
this in FSP?

!11

DM519 Concurrent Programming

Example: Selective Receive

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]
 |when(i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)
 ||DEPARTURES). Implementation

using message
passing?

Interpret as
channels

!12

DM519 Concurrent Programming

Java Implementation - Selective Receive

class MsgCarPark implements Runnable {
 private Channel<Signal> arrive, depart;
 private int spaces, N;
 private StringCanvas disp;
!
 public MsgCarPark(Channel<Signal> a,
 Channel<Signal> l,
 StringCanvas d,int capacity) {
 depart=l; arrive=a; N=spaces=capacity; disp=d;
 }
 …
 public void run() {…}
}

Implement
CARPARKCONTROL as a
thread MsgCarPark
which receives signals
from channels arrive
and depart.

!13

DM519 Concurrent Programming

Java Implementation - Selective Receive
public void run() {
 try {
 Select sel = new Select();
 sel.add(depart);
 sel.add(arrive);
 while(true) {
 ThreadPanel.rotate(12);
 arrive.guard(spaces>0);
 depart.guard(spaces<N);
 switch (sel.choose()) {
 case 1:depart.receive();display(++spaces);
 break;
 case 2:arrive.receive();display(--spaces);
 break;
 }
 }
 } catch InterrruptedException{}
 }

See applet

!14

DM519 Concurrent Programming

♦ send(e,p) - send e to port p.
The calling process is not blocked.
The message is queued at the port
if the receiver is not waiting.

10.2 Asynchronous Message Passing - Port

Port p
Receiver
v=receive(p)

♦ v = receive(p) - receive a
value into local variable v from
port p. The calling process is
blocked if no messages queued to
the port.

Sender
send(e,c)
Sender
send(e,c)Sender[n]

send(en,p)
many-to-one

!15

DM519 Concurrent Programming

Asynchronous Message Passing - Applet

Two senders
communicate with a
receiver via an
“unbounded” port.

Each sender sends
a sequence of
integer values from
0 to 9 and then
restarts at 0 again.

Instances of SlotCanvasInstances of ThreadPanel

Port<Integer> port = new Port<Integer> ();
tx1.start(new Asender(port,send1disp));
tx2.start(new Asender(port,send2disp));
rx.start(new Areceiver(port,recvdisp));

!16

DM519 Concurrent Programming

Java Implementation - Port

The
implementation of
Port is a
monitor that has
synchronized
access methods
for send and
receive.

class Port<T> extends Selectable {
!
 Queue<T> queue = new LinkedList<T>(); !
 public synchronized void send(T v){
 queue.add(v);
 signal();
 } !
 public synchronized T receive()
 throws InterruptedException {
 block(); clearReady();
 return queue.remove();
 }
}

!17

DM519 Concurrent Programming

Port Fsp Model

range M = 0..9 // messages with values up to 9
set S = {[M],[M][M]} // queue of up to three messages
!
PORT // empty state, only send permitted
 = (send[x:M]->PORT[x]),
PORT[h:M] // one message queued to port
 = (send[x:M]->PORT[x][h]
 |receive[h]->PORT
),
PORT[t:S][h:M] // two or more messages queued to port
 = (send[x:M]->PORT[x][t][h]
 |receive[h]->PORT[t]
). !!
// minimise to see result of abstracting from data values
||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?

What happens if
you send 4 values?

!18

DM519 Concurrent Programming

Model Of Applet

ASENDER = ASENDER[0],
ASENDER[e:M] = (port.send[e]->ASENDER[(e+1)%10]).
!
ARECEIVER = (port.receive[v:M]->ARECEIVER).
!
||AsyncMsg = (s[1..2]:ASENDER || ARECEIVER||port:PORT)
 /{s[1..2].port.send/port.send}.

Safety?

S[1..2]:
ASENDER port:PORT ARECEIVER

AsynchMsg

port.receiveS[1..2].port.send

!19

DM519 Concurrent Programming

10.3 Rendezvous - Entry

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended perform service

Rendezvous is a form of request-reply to support client server
communication. Many clients may request service, but only one is
serviced at a time.

!20

DM519 Concurrent Programming

Rendezvous

♦ res=call(e,req) - send the
value req as a request message
which is queued to the entry e.

!
!
♦The calling process is blocked
until a reply message is received
into the local variable req.

♦ req=accept(e) - receive
the value of the request
message from the entry e into
local variable req. The calling
process is blocked if there are
no messages queued to the
entry.
♦ reply(e,res) - send the
value res as a reply message to
entry e.

The model and implementation use a port for one direction and a
channel for the other. Which is which?

!21

DM519 Concurrent Programming

Entry<String,String> entry = new Entry<String,String>();
clA.start(new Client(entry,clientAdisp,"A"));
clB.start(new Client(entry,clientBdisp,"B"));
sv.start(new Server(entry,serverdisp));

Rendezvous - Applet

Two clients call a server
which services a request
at a time.

Instances of SlotCanvasInstances of ThreadPanel

!22

DM519 Concurrent Programming

Java Implementation - Entry

call() creates a channel
object on which to receive
the reply and passes a
references to this in the
message to the server.

It then awaits the reply on
the channel.

accept() keeps a copy of the channel
reference;

reply() sends the reply message to
this channel.

Entries: implemented as
extensions of ports

!23

DM519 Concurrent Programming

class Entry<R,P> extends Port<CallMsg<R,P>> {
 private CallMsg<R,P> cm; !
 public P call(R req) throws InterruptedException {
 Channel<P> clientChan = new Channel<P>();
 this.send(new CallMsg<R,P>(req,clientChan));
 return clientChan.receive();
 } !
 public R accept() throws InterruptedException {
 cm = this.receive();
 return cm.request;
 } !
 public void reply(P res) throws InterruptedException {
 cm.replychan.send(res);
 } !
 private class CallMsg<R,P> {
 R request;
 Channel<P> replychan;
 CallMsg(R m, Channel<P> c)
 {request=m; replychan=c;}
 } }

Java Implementation - Entry

Do call, accept and
reply need to be
synchronized methods?

!24

DM519 Concurrent Programming

Model Of Entry And Applet

set M = {replyA,replyB} // reply channels !
||ENTRY = PORT/{call/send, accept/receive}. !
CLIENT(CH='reply) = (entry.call[CH]->[CH]->CLIENT). !
SERVER = (entry.accept[ch:M]->[ch]->SERVER). !
||EntryDemo = (CLIENT('replyA)||CLIENT('replyB)
 || entry:ENTRY || SERVER).

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.acceptentry.call[M]

We reuse the models for ports and channels …

Action labels
used in
expressions or
as parameter
values must be
prefixed with a
single quote.

!25

DM519 Concurrent Programming

Rendezvous Vs Monitor Method Invocation

What is the difference?

 … from the point of view of the client?

 … from the point of view of the server?

 … mutual exclusion?

!
Which implementation is more efficient?

 … in a local context (client and server in same computer)?

 … in a distributed context (in different computers)?

!26

DM519 Concurrent Programming

Message Passing

Concepts: synchronous message passing - channel
 asynchronous message passing - port
 - send and receive / selective receive
 rendezvous bidirectional comm. - entry
 - call and accept ... reply
!
Models: channel : relabelling, choice & guards
 port : message queue, choice & guards
 entry : port & channel
!
Practice: distributed computing (disjoint memory)
 threads and monitors (shared memory)

!27

