
DM 536 Introduction to Programming

Fall 2012 Project (Part 1)

Department of Mathematics and Computer Science
University of Southern Denmark

September 14, 2012



2

Introduction
The purpose of the project for DM536 is to try in practice the use of program-
ming techniques and knowledge about the programming language Python on
small but interesting examples.

There are two possible projects. You have to pick one of these. Each
project consists of two parts. You may choose to do the first part of one
project and the second part of the other project.

Please make sure to read this entire note before starting your work on
this part of the project. Pay close attention to the sections on deadlines,
deliverables, and exam rules.

Exam Rules
This first part of the project is a part of the final exam. Both parts of the
project have to be passed to pass the overall project.

Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Deliverables
A short project report (at least 4 pages without appendix) has to be delivered.
This report has to contain the following 7 sections:

• front page (course number, name, section, date of birth)

• specification (what the program is supposed to do)

• design (how the program was planned)

• implementation (how the program was written)

• testing (what tests you performed)

• conclusion (how satisfying the result is)

• appendix (complete source code)

The report has to be delivered as a single PDF file electronically using Black-
board’s SDU Assignment functionality.

Deadline

October 3, 11:00



3

Project “Fractals and the Beauty of Nature”

Fractals are geometric objects that are
similar to themselves on arbitrarily
small scales. There are many examples
of fractals in nature, and they form some
of the most beautiful structures you can
find. One example is snowflakes, but
also lightning has a fractal structure.
Another example are ferns, where each
part is similar to the whole.

In this project, we will use Swampy
to generate fractals that are similar to
structures found in nature.

Task 0 – Preparation

On the course home page you find an example us-
ing a Koch curve to render a snowflake (koch.py,
FractalWorld.py, koch2.png, and koch5.png). Use
this example and experiment with the depth and the
length parameters. Make sure you use the updated file
FractalWorld.py. Understand what (new) features are
used here. In particular, line width and color options
have been added to fd.

Task 1 – Sierpinski Triangle

A Sierpinski triangle is a triangle divided into three
triangles, that are demselves divided into three tri-
angles etc. On the course home page, you find
four examples (sierpinski0.png, sierpinski1.png,
sierpinski2.png, and sierpinski5.png). On the
right-hand side you see a Sierpinski triangle of depth
5, i.e., a triangle that has been subdivided five times.

You task is to write a Python program that draws a Sierpinski triangle.
To this end, you can follow the approach of the Koch Snowflake, i.e., at depth
0 you draw a triangle. At any other depth n, you draw Sierpinski triangle
of depth n− 1, move to the next corner, draw another Sierpinski triangle of
depth n − 1, move to the last corner, draw the third Sierpinski triangle of
depth n− 1, and, finally, move to the original corner.



4

Task 2 – Binary Tree

A binary tree is a tree, which is obtained
by first drawing a stem and then subdivid-
ing into two branches. A tree consisting of
just a stem is called a tree of depth 1. The
picture to the left shows a tree of depth 12.
On the course home page, you find exam-
ples (tree3.png, tree6.png, tree9.png, and
tree12.png). Here, as an addition, the last two
layers of branches have been colored darkgreen

instead of green.
You task is to write a Python program that draws a binary tree. To this

end, you have to modify the approach from the previous tasks slightly. The
main idea is to draw a line, then turn and draw the left branch, then turn
and draw the right branch, and, finally, go back where you came from.

Task 3* – Fern Time

There are three differences between a
fern and a binary tree. First, the
fern has three branches from each stem
and each subbranch. Second, the
fern use some small constant angle
to turn the middle branch. Third,
the middle branch is scaled down less
than the left and the right branch.
On the course home page, you find
examples (fern03.png, fern06.png,
fern12.png, and fern24.png).

Your challenge task is to write a Python program that draws a fern. To
this end, you have to modify the approach from the previous task. The
main idea is that due to the third difference, a constant recursion depth is
not useful in implementing a fern. Instead, define a limit for the size of the
subbranches drawn and use this as the base case of the recursion.

Note that this task is optional and does not have to be solved for this
part of the project to be considered as passed.



5

Project “From DNA to Proteins”

In nature, deoxyribonucleic acid (short: DNA)
is used to encode genetic information of living
organisms as sequences of bases. There are four
bases found in DNA: adenine (short: A), cyto-
sine (short: C), guanine (short: G), and thymine
(short: T). One of the main functions of DNA is
to encode the sequence of amino acids used in
the construction of proteins.

Modern technological advances have made
it possible to decipher this genetic information.
You can find for example the base sequences of
human chromosomes on the following web site:

http://hgdownload.cse.ucsc.edu/downloads.html

In this project, we will assemble base sequences from such files and analyze
these sequences to identify proteins.

Task 0 – Preparation
Download the file chromFa.tar.gz from the full data set for human and
unpack it. Locate the files chr1 gl000191 random.fa and chrX.fa and view
them in a text viewer or editor.

The first line is a short description of the sequence contained in the file.
The rest of the lines is the base sequence. You will find lower-case and upper-
case variants of the bases A, C, G, and T. In addition you will find N, which
for the purpose of this project can be ignored.

Task 1 – Assembling the Sequence
For our purposes, we will ignore Ns and we will ignore the difference between
lower-case a, c, g, t and upper-case A, C, G, T.

Your task is to write a program that reads all lines and constructs one
long string containing the base sequence. In this process, whitespace and
Ns have to be ignored. In addition, all base pairs should be represented by
upper-case letters. Use the smaller file to print the result and compare the
beginning of the assembled sequence manually to the original file.

http://hgdownload.cse.ucsc.edu/downloads.html


6

Task 2 – Finding Starting Points
The construction of a protein by a ribosome begins at a start codon. On
our DNA, this is denoted by the base sequence ATG. This is called a start
codon. Approximately 25 bases earlier in the sequence we often find a so-
called TATA box. This is a base sequence TATAAA.

Your task is to write a function that will find all positions of a start
codon that occurs 15-30 bases after the beginning of a TATA box. To this
end, first write a function that will find all positions of the string TATAAA in
the sequence. Then, find out how far the next ATG is located. If the distance
is inside the admissible range, remember the index of the start codon.

Task 3 – Finding End Points
Each protein is encoded by a sequence of bases starting with ATG. Every
amino acid is encoded by three bases. The end of a protein is given by a stop
codon. This can be any of the following three sequences: TAG, TAA, or TGA.

Your task is to write a function that will identify the end point of a
protein, i.e., the index of the first stop codon encountered after the start
codon. To this end, you need to advance in steps of 3 through the base
sequence until you encounter either the end of the sequence or a stop codon.

Task 4* – Potential Proteins without TATA Boxes
Not all proteins are prefixed by a TATA box occurring 15-30 bases ear-
lier. In general, potential proteins can be overlapping. For example, the
base sequence ATGAATGAATAGATGA contains a potential protein at index 0
(ATGAATGAATAG) and at index 4 (ATGAATAGATGA). We call this a genuine over-
lap. There is also trivial overlap, when ATG occurs inside a base sequence at
a position divisible by three, e.g., ATGATGTAG.

Your challenge task is to identify all potential starts of proteins and an-
swer the following two questions w.r.t. the file chrX.fa:

• How many genuine overlaps are there?

• How many potential proteins are there? Here, for genuine overlaps
both proteins count while for trivial overlaps, only the longest protein
counts.

Note that this task is optional and does not have to be solved for this
part of the project to be considered as passed.


