
DM536
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

DICTIONARIES

June 2009 2

Generalized Mappings

§  list = mapping from integer indices to values
§  dictionary = mapping from (almost) any type to values
§  indices are called keys and pairs of keys and values items

§  empty dictionaries created using curly braces “{}”
§  Example: en2da = {}

§  keys are assigned to values using same syntax as for sequences
§  Example: en2da["queen"] = "dronning"

 print en2da

§  curly braces “{” and “}” can be used to create dictionary
§  Example: en2da = {"queen" : "dronning", "king" : "konge"}

June 2009 3

Dictionary Operations

§  printing order can be different: print en2da
§  access using indices: en2da["king"] == "konge"
§  KeyError when key not mapped: print en2da["prince"]
§  length is number of items: len(en2da) == 2
§  in operator tests if key mapped: "king" in en2da == True

 "prince" in en2da == False
§  keys() metod gives list of keys:

 en2da.keys() == ["king", "queen"]
§  values() method gives list of values:

 en2da.values() == ["konge", "dronning"]
§  useful e.g. for test if value is used:

 "prins" in en2da.values() == False
June 2009 4

Dictionaries as Sets

§  dictionaries can be used as sets
§  Idea: assign None to all elements of the set
§  Example: representing the set of primes smaller than 20

 primes = {2: None, 3: None, 5: None, 7: None, 11: None,
 13: None, 17: None, 19: None}

§  then in operator can be used to see if value is in set
§  Example:

 15 in primes == False
 17 in primes == True

§  for lists, needs steps proportional to number of elements
§  for dictionary, needs (almost) constant number of steps

June 2009 5

Counting Letter Frequency

§  Goal: count frequency of letters in a string (histogram)
§  many possible implementations, e.g.:

§  create 26(+3?) counter variables for each letterl; use
chained conditionals (if … elif … elif …) to increment

§  create a list of length 26(+3?); increment the element at
index n-1 if the n-th letter is encountered

§  create a dictionary with letters as keys and integers as
values; increment using index access

§  all these implementations work (differently)
§  big differences in runtime and ease of implementation
§  choice of data structure is a design decision

June 2009 6

Counting with Dictionaries

§  fast and counts all characters – no need to fix before!
def histogram(word):
 d = {}
 for char in word:
 if char not in d:
 d[char] = 1
 else:
 d[char] += 1
 return d
§  Example: h = histogram("slartibartfast")

 h == {"a":3, "b":1, "f":1, "i":1, "l":1, "s":2, "r":2, "t":3}

June 2009 7

dict

"a"	
 3	

1	
"b"	

x

…	
 …	

"t"	
 3	

Counting with Dictionaries

§  fast and counts all characters – no need to fix before!
def histogram(word):
 d = {}
 for char in word:
 if char not in d:
 d[char] = 1
 else:
 d[char] += 1
 return d
§  access using the get(k, d) method: h.get("t", 0) == 3

 h.get("z", 0) == 0

June 2009 8

dict

"a"	
 3	

1	
"b"	

x

…	
 …	

"t"	
 3	

Traversing Dictionaries

§  using a for loop, you can traverse all keys of a dictionary
§  Example: for key in en2da:

 print key, en2da[key]

§  you can also traverse all values of a dictionary
§  Example: for value in en2da.values():

 print value

§  finally, you can traverse all items of a dictionary
§  Example: for item in en2da.items():

 print item[0], item[1] # key, value

June 2009 9

Reverse Lookup

§  given dict. d and key k, finding value v with v == d[k] easy
§  this is called a dictionary lookup
§  given dict. d and value v, finding key k with v == d[k] hard
§  there might be more than one key mapping to v (cf. example)
§  Possible implementation 1:
def reverse_lookup(d, v):
 result = []
 for key in d:
 if d[key] == v:
 result.append(key)
 return result
§  returns empty list, when no key maps to value v

June 2009 10

Reverse Lookup

§  given dict. d and key k, finding value v with v == d[k] easy
§  this is called a dictionary lookup
§  given dict. d and value v, finding key k with v == d[k] hard
§  there might be more than one key mapping to v (cf. example)
§  Possible implementation 2:
def reverse_lookup(d, v):
 for k in d:
 if d[k] == v:
 return k
 raise ValueError
§  gives error when no key maps to value v

June 2009 11

Reverse Lookup

§  given dict. d and key k, finding value v with v == d[k] easy
§  this is called a dictionary lookup
§  given dict. d and value v, finding key k with v == d[k] hard
§  there might be more than one key mapping to v (cf. example)
§  Possible implementation 2:
def reverse_lookup(d, v):
 for key in d:
 if d[k] == v:
 return k
 raise ValueError, "value not found in dictionary"
§  gives error when no key maps to value v

June 2009 12

Dictionaries and Lists

§  lists cannot be keys, as they are mutable
§  list can be values stored in dictionaries
§  Example: inverting a dictionary
def invert_dict(d):
 inv = {}
 for key in d:
 val = d[key]
 if val not in inv:
 inv[val] = [key]
 else:
 inv[val].append(key)
 return inv

June 2009 13

Dictionaries and Lists

§  lists cannot be keys, as they are mutable
§  list can be values
§  Example: inverting a dictionary
def invert_dict(d):
 inv = {}
 for key in d:
 val = d[key]
 if val not in inv:
 inv[val] = []
 inv[val].append(key)
 return inv
§  Example: print invert_dict(histogram("hello"))

June 2009 14

Dictionaries and Lists

§  Example: print invert_dict(histogram("hello"))
June 2009 15

dict

"e"	
 1	

1	
"h"	

x

"l"	
 2	

"o"	
 1	

dict

 1	

 2	

inv	

list

0	
 "e"	

"h"	

"o"	

1	

2	

list

0	
 "l"	

Memoizing

§  Fibonacci numbers lead to exponentially many calls:
def fib(n):
 if n in [0,1]: return n
 return fib(n-1) + fib(n-2)
§  keeping previously computed values (memos) helps:
known = {0:0, 1:1}
def fib_fast(n):
 if n in known:
 return known[n]
 res = fib_fast(n-1) + fib_fast(n-2)
 known[n] = res
 return res

June 2009 16

Global Variables

§  known is created outside fib_fast and belongs to __main__
§  such variables are called global
§  many uses for global variables (besides memoization)
§  Example 1: flag for controlling output
debug = True
def pythagoras(a,b):
 if debug: print "pythagoras with a =d", a, " and b = d", b
 result = math.sqrt(a**2 + b**2)
 if debug: print "result of pythagoras:", result
 return result

June 2009 17

Global Variables

§  known is created outside fib_fast and belongs to __main__
§  such variables are called global
§  many uses for global variables (besides memoization)
§  Example 2: track number of calls
num_calls = 0
def pythagoras(a,b):
 global num_calls
 num_calls += 1
 return math.sqrt(a**2 + b**2)
§  gives UnboundLocalError as num_calls is local to pythagoras
§  declare num_calls to be global using a global statement

June 2009 18

Long Integers

§  Python uses 32 or 64 bit for int
§  this limits the numbers that can be represented:

§  32 bit: from -2**31 to 2**31–1
§  64 bit: from -2**63 to 2**63–1

§  for larger numbers, Python automatically uses long integers
§  Example:

 fib(93) == 12200160415121876738L

§  long integers work just like int, only with "L" as suffix
§  Example: 2**64 + 2**64 == 2**65

 fib(100)**fib(20) # has 139016 digits :-o

June 2009 19

Debugging Larger Datasets

§  debugging larger data sets, simple printing can be too much
1.  scale down the input – start with the first n lines; a good

value for n is a small value that still exhibits the problem
2.  scale down the output – just print a part of the output; when

using strings and lists, slices are very handy
3.  check summaries and types – check that type and len(…) of

objects is correct by printing them instead of the object
4.  write self-checks – include some sanity checks, i.e., test

Boolean conditions that should definitely hold
5.  pretty print output – even larger sets can be easier to

interpret when printed in a more human-readable form

June 2009 20

TUPLES

June 2009 21

Tuples as Immutable Sequences

§  tuple = immutable sequence of values
§  like lists, tuples are indexed by integers

§  tuples can be enclosed in parentheses “(” and “)”
§  Example: t1 = "D", "o", "u", "g", "l", "a", "s"

 t2 = (65, 100, 97, 109, 115)
 t3 = 42, # or (42,) - but not (42)

§  tuples can be created from sequences using tuple(iterable)
§  Example: t1 == tuple("Douglas")

 tuple(["You", 2]) == ("You", 2)

June 2009 22

Tuples as Immutable Sequences

§  tuple = immutable sequence of values
§  like lists, tuples are indexed by integers

§  tuples can be accessed using indices and slices
§  Example: t = "D", "o", "u", "g", "l", "a", "s"

 t[3] == "g"
 t[1:3] == ("o", "u")

§  tuples cannot be changed, but they can be concatenated
§  Example: u = ("d",) + t[1:]

June 2009 23

Tuple Assignment

§  remember, how to exchange two values:
§  Solution 1 (new variable): z = y; y = x; x = z
§  Solution 2 (parallel assign.): x, y = y, x

§  now, we see that this is a tuple assignment
§  assignment to a tuple is assignment to each tuple element
§  works not only with other tuple, but with any sequence
§  Example:

 x, y, z = [23, 42, -3.0]
 name = "Peter Schneider-Kamp"
 first, last = name.split()

June 2009 24

Tuples as Return Values

§  useful to return more than one value in a function
§  but functions only return one value
§  tuples can be used to contain multiple values
§  Example 1: built-in function divmod(x,y)

 t = divmod(10, 3)
 print t
 quot, rem = divmod(101, 17)

§  Example 2: extract username, hostname, and domain
 def decompose(email):
 username, rest = email.split("@")
 rest = rest.split(".")
 return username, rest[0], ".".join(rest[1:])

June 2009 25

Variable-Length Argument Tuples

§  functions can take a variable number of arguments
§  arguments are passed as one tuple (gather)
§  Example 1: function that works similar to print statement

 def printf(*args): # * indicates variable arguments
 for arg in args: # iterates through tuple
 print arg, # prints one argument
 print # prints new line

§  Example 2: prints all arguments n times
 def printn(n, *args):
 for arg in args * n:
 print arg

June 2009 26

Tuples instead of Arguments

§  tuples cannot directly be used instead for normal parameters
§  Example:

 t = (42, 23)
 print divmod(t) # gives TypeError

§  using “*” we can declare that a tuple should be scattered
§  Example:

 print divmod(*t) # prints (1, 19)

June 2009 27

Lists and Tuples

§  built-in function zip() combines two sequences
§  Example 1:

 zip([1, 2, 3], ["c", "b", "a"]) == [(1, "c"), (2, "b"), (3, "a")]
§  Example 2:

 zip("You", "suck!") == [("Y", "s"), ("o", "u"), ("u", "c")]

§  iteration through list of tuples using tuple assignment
§  Example:

 t = [(1, "c"), (2, "b"), (3, "a")]
 for num, ch in t:
 print "we have paired", num, "and", ch

June 2009 28

Lists and Tuples

§  with zip(), for loop, and tuple assignment we can iterate
through two sequences in parallel

§  Example 1: sum of product of elements (dot product)
def dot_product(x, y):
 res = 0
 for a, b in zip(x, y):
 res += a*b
 return res
dot_product([1, 4, 3], [4, 5, 6])
§  Example 2: the same shorter …
def dot_product(x, y):
 return reduce(lambda x, y: x + y[0] * y[1], zip(x, y), 0)

June 2009 29

Dictionaries and Tuples

§  dictionaries return a list of tuples with the items() method
§  Example: d = {"a" : 3, "b" : 2, "c" : 1}

 d.items() == [("a", 3), ("c", 1), ("b", 2)]

§  tuples can also be used to create new dictionary using dict()
§  Example: t = [("a", 3), ("c", 1), ("b", 2)]

 dict(t) == {"a" : 3, "b" : 2, "c" : 1}

§  combine with zip() for easy dictionary generation
§  Example: d = dict(zip("abcdefg", range(7,0,-1)))

§  with tuple assignment and for loop, easy traversal
§  Example: for key, val in d.items(): print key, val

June 2009 30

Dictionaries and Tuples

§  tuples can be used as dictionary keys (they are immutable)
§  Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

 p[last, first] = 65502327
§  traversal by for loop and tuple assignment
§  Example 1: for last, first in p: print first, last, p[last, first]
§  Example 2: for (last, first), num in p.items(): print last, first, num

June 2009 31

dict

 *	
p

tuple

0	
 "Schneider-Kamp"	

1	
 "Peter"	

65502327	

Dictionaries and Tuples

§  tuples can be used as dictionary keys (they are immutable)
§  Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

 p[last, first] = 65502327
§  traversal by for loop and tuple assignment
§  Example 1: for last, first in p: print first, last, p[last, first]
§  Example 2: for (last, first), num in p: print last, first, num

June 2009 32

dict

"Schneider-Kamp", "Peter"	
p 65502327	

Comparing Tuples

§  comparing tuples same as comparing any sequence
§  like with strings, sequences are compared lexicographically
§  Example: (3,) > (2, 2, 2)

 (1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§  tuples can be used to sort lists after arbitrary criteria
§  Example: sort list of words after their length, shortest last
def sort_by_length(words):
 t = []; res = []
 for word in words: t.append((len(word), word))
 t.sort(reverse=True)
 for length, word in t: res.append(word)
 return res

June 2009 33

Comparing Tuples

§  comparing tuples same as comparing any sequence
§  like with strings, sequences are compared lexicographically
§  Example: (3,) > (2, 2, 2)

 (1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§  tuples can be used to sort lists after arbitrary criteria
§  Example: sort list of words after their length, shortest last
def sort_by_length(words):
 t = map(lambda x: (len(x), x), words)
 t.sort(reverse=True)
 return map(lambda pair: pair[1], t)

June 2009 34

Sequences of Sequences

§  most sequences can contain other types of sequences
§  string is an exception, as it only contains characters
§  can always use a list of characters instead of string
§  lists usually preferred to tuples (they are mutable)
§  in some situtations, tuples more often used:

1.  tuples are more “easy” to construct, e.g. return n, n**2
2.  tuples can be dictionary keys (they are immutable)
3.  tuples are safer due to “aliasing”, so use them e.g. as

sequence arguments to functions
§  methods sort() and reverse() not available for tuples
§  use functions sorted(iterable) and reversed(iterable) instead

June 2009 35

Debugging Shape Errors

§  lists, dictionaries, and tuples are data structures
§  combining this, we obtain compound data structures
§  this gives rise to new errors, so called shape errors
§  a shape error is when the structure of the compound data

structure does not fit its use
§  Example: d = {("Schneider-Kamp", "Peter") : 65502327}

 for last, first, number in d: print number
§  use structshape module for debugging
§  available from http://thinkpython.com/code/structshape.py
§  Example: from structshape import structshape

 structshape(d) == "dict of 1 tuple of 2 str->int"

June 2009 36

SELECTING
DATA STRUCTURES

June 2009 37

Reading and Cleaning Words

1.  read file given as argument
2.  break lines into words
3.  strip whitespace & punctuation
4.  convert to lower-case letters

§  import module sys for command line arguments sys.argv
§  Example: import sys; print sys.argv

§  import module string for punctuation
§  Example: import string; print string.punctuation

§  use translate(None, deletechars) to remove punctuation
§  Example: "Hello World!".translate(None, "ol")

June 2009 38

Word Frequency in E-Books

1.  use program on Project Gutenberg e-book
2.  skip over beginning & end of ebook (marked "***")
3.  count total number of words
4.  count number of times each word is used
5.  print 20 most frequently used words

§  use Boolean flag to indicate when to start

§  use list to gather all words (and count total number)

§  use dictionary to count number of times each word is used

§  use tuple comparison to sort words

June 2009 39

Optional Parameters

§  have seen functions that take variable length argument list

§  also possible to make some parameters optional
§  in this case, default value has to be supplied by programmer
§  Example:
def print_most_common(hist, num = 10):
 t = most_common(hist)
 print "The most common", num, "words are:"
 for n, word in t[:num]:
 print word, "\t", n
print_most_common(freq, 20)

June 2009 40

Dictionary Subtraction

1.  find all words that do NOT occur in other word list

§  to this end, subtract dictionaries from each other
§  Idea: new dictionary containing with keys only in first dict
§  Implementation:
def subtract(d1, d2):
 d = {}
 for key in d1:
 if key not in d2:
 d[key] = None
 return d

June 2009 41

