python

powered

A

DM536 / DM550 Part |
Introduction to Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM536/

RECURSION

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example I:
def countdown(n):
if n <=0:
print "Ka-Boooom!"
else:
print n, "seconds left!"
countdown(n-1)

countdown(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagrams for Recursion

__main__

countdown n > 3
countdown n > 2
countdown n > |
countdown n > 0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
lt(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
if n > 0:
fd(t, length)
lt(t, angle)
polyline(t, n-1, length, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Infinite Recursion

* base case = no recursive function call reached
= we say the function call terminates

= Example I: n == 0 in countdown / polyline

* infinite recursion = no base case is reached

= also called non-termination

= Example:
def infinitely often():
infinitely _often()

= Python has recursion limit 1000 — ask sys.getrecursionlimit()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Keyboard Input

= so far we only know input()
= what happens when we enter Hello!?

= input() treats all input as Python expression <expr>

= for string input, use raw_input()
= what happens when we enter 42?

* raw_input() treats all input as string

= both functions can take one argument prompt

* Example |: a = input("first side: ")
= Example 2: name = raw_input(" Your name:\n")
= “\n” denotes a new line: print "Hello\nWorld\n!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem

= Example:

def determine_vat(base_price, vat_price):

real
problem

factor = base_price / vat_price

reverse_ factor = | / factor
return reverse_factor - |
print determine_vat(400, 500)

error
reported

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem
= Example:
def determine_vat(base_price, vat_price):
factor = float(base price) / vat_price
reverse_ factor = | / factor
return reverse_factor - |
print determine_vat(400, 500)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

FRUITFUL FUNCTIONS

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O0:
return - |
elif x == 0:
return 0
else:

return |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O:
return -1
elif x == 0:
return O

return |

= important that all paths reach one return

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance

print "dx:", dx

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x1, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
print "dx:", dx

dy =y2 -yl # vertical distance
print "dy:", dy

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
print "dx:", dx

dy =y2 -yl # vertical distance
print "dy:", dy

dxs = dx**2; dys = dy**2
print "dxs dys:", dxs, dys

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2
print "dxs dys:", dxs, dys

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2
print "dxs dys:", dxs, dys
ds = dxs + dys # square of distance

print "ds:", ds

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance
print "ds:", ds

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x1, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance
print "ds:", ds

d = math.sqrt(ds) # distance

print d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance
print d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance
print d

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)

def distance(x|, yl, x2, y2):

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™?2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
return math.sqrt(dx**2 + dy**2)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it

|. start with minimal function
add functionality piece by piece
use variables for intermediate values

print those variables to follow your progress

A S

remove unnecessary output when function is finished

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Composition

= function calls can be arguments to functions

= direct consequence of arguments being expressions

* Example: area of a circle from center and peripheral point

def area(radius):

return math.pi * radius™*2

def area_from_ points(xc, yc, Xp, Yp):

return area(distance(xc, yc, Xp, Yp))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
ify/ x*x==y: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
if y % x == 0: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x == 0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

= boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

def odd(x):
return not divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

= boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

def odd(x):

return not even(x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

RECURSION:
SEE RECURSION

Recursion is “Complete”

= so far we know:
= values of type integer, float, string
= arithmetic expressions
= (recursive) function definitions
= (recursive) function calls
= conditional execution

" input/output

= ALL possible programs can be written using these elements!

= we say that we have a “Turing complete” language

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Factorial

* in mathematics, the factorial function is defined by
= 0=
= n!=n*(n-1)!
= such recursive definitions can trivially be expressed in Python
= Example:
def factorial(n):
if n ==
return |
recurse = factorial(n-1)
result = n * recurse
return result

x = factorial(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3
factorial n->2
factorial n- |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n> 1| recurse> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

recurse > |

result > |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

recurse > |

result > |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n=>3
n=>2 recurse > |
n>1 recurse> 1 result> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___

factorial

factorial

factorial

factorial

n>3
n>2 recurse> | result> 2
n>1| recurse> | result> |
n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3

factorial n>2 recurse> | result> 2
factorial n>1 recurse> | result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3 recurse> 2

factorial n>2 recurse> | result> 2
factorial n>1 recurse> | result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3 recurse>2 vresult> 6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> | result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___
6
factorial n>3 recurse> 2 result> 6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main___ x> 6
6
factorial n>3 recurse> 2 result> 6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Leap of Faith

= following the flow of execution difficult with recursion

= alternatively take the “leap of faith” (induction)

= Example:

def factorial(n): check the
if n ==0: base case

return | :
assume recursive

call is correct

1/

recurse = factSianer
result = n * recurse

return result check the
x = factorial(3) step case

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: def factorial(n):

if n ==0:
- ->< factorial(n) "
’ return |

/ .
/ recurse = factorial(n-1)
: result = n * recurse
\ return result

\

\

~ o
~ recurse = factorial(n-1)

v

result = n * recurse

v

Getu rn resuID return | >

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

True

Fibonacci

= Fibonacci numbers model for unchecked rabbit population

* rabbit pairs at generation n is sum of rabbit pairs at
generation n-1 and generation n-2

= mathematically:
= fib(0) = 0, fib(l) = I, fib(n) = fib(n-1) + fib(n-2)

= Pythonically:

def fib(n):
ifn==0: returnO
elif n == 1: return |
else: return fib(n-1) + fib(n-2)

* “leap of faith” required even for small n!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: def fib(n):
if n==0:
fib(n ><
/’< (n) . return O
II \\ elif n ==
! ‘\ return |
V' else:

return fib(n-1) + fib(n-2)

\ /
‘Qeturn fib(n-1) + ﬁb(n-2)>’ return I> return 0>

Types and Base Cases

def factorial(n):
if n ==0:
return |
recurse = factorial(n-1)
result = n * recurse

return result

Problem: factorial(l.5) exceeds recursion limit
factorial(0.5)
factorial(-0.5)
factorial(-1.5)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

* lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if not isinstance(n, int):
print "Integer required”; return None
if n ==
return |

recurse = factorial(n-1)
result = n * recurse

return result

* lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if not isinstance(n, int):
print "Integer required”; return None
if n <O:
print "Non-negative number expected”; return None
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

* lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Interfaces

* interfaces simplify testing and debugging

|. test if pre-conditions are given:
* do the arguments have the right type!

= are the values of the arguments ok!?

2. test if the post-conditions are given:
" does the return value have the right type!

" is the return value computed correctly?

3. debug function, if pre- or post-conditions violated

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging (Recursive) Functions

= to check pre-conditions:

= print values & types of parameters at beginning of function
* insert check at beginning of function (pre assertion)

= to check post-conditions:
= print values before return statements

* insert check before return statements (post assertion)

= side-effect; visualize flow of execution

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

ITERATION

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multiple Assighment Revisited

= as seen before, variables can be assigned multiple times
= assignment is NOT the same as equality

" it is not symmetric, and changes with time

= Example: from here,
a=42 a and b are equal
b=a
from here,
a and b are different
a =23

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Updating Variables

* most common form of multiple assighment is updating

= avariable is assigned to an expression containing that variable

= Example:
x =123
for i in range(19):

x=x+ |
= adding one is called incrementing

= expression evaluated BEFORE assignment takes place

= thus, variable needs to have been initialized earlier!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Iterating with While Loops

" iteration = repetition of code blocks

= can be implemented using recursion (countdown, polyline)

= while statement:
<while-loop> => while <cond>:
<instr,>; <instr,>; <instr;>

= Example: def countdown(n):
e /while n>0:
n==0 \ print n, "seconds left!"
K e < n=n- |

print "Ka-Boom!"

countdown(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Termination

= Termination = the condition is eventually False
* |loop in countdown obviously terminates:

while n > 0: n=n-|
= difficult for other loops:

def collatz(n):

while n != I:
print n,
ifn%2==0: # nis even
n=n/2
else: # nis odd
n=3%n+|

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Termination

= Termination = the condition is eventually False
* |loop in countdown obviously terminates:

while n > 0: n=n-|
= can also be difficult for recursion:

def collatz(n):

ifn!=1:
print n,
ifn%2==0: # nis even
collatz(n / 2)
else: # nis odd

collatz(3 *n + 1)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Breaking a Loop

" sometimes you want to force termination

= Example:
while True:
num = raw_input(‘enter a number (or "exit"):\n’)
if num == "exit":
break
n = int(num)

print "Square of", n, "is:", n**2

print "Thanks a lot!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|, start with some value X,
2. refine this value using x ., = x, —f(x,) / f'(x,)
= for square root of a: f(x) =x2—a f(x)=2x

= simplifying for this special case: x_,, = (x,+a/x,) /2

= Example I: while True:
print xn
xnpl = (xn+a/xn)/?2
if xnpl == xn:
break

xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|, start with some value X,

2. refine this value using x ., = x, —f(x,) / f'(x,)

= Example 2: def f(x): return x**3 - math.cos(x)
def fl(x): return 3*x*2 + math.sin(x)
while True:
print xn

xnpl = xn - f(xn) / fl(xn)
if xnpl == xn:
break

xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|, start with some value X,

2. refine this value using x ., = x, —f(x,) / f'(x,)

= Example 2: def f(x): return x**3 - math.cos(x)
def fl(x): return 3*x*2 + math.sin(x)
while True:
print xn

xnpl = xn - f(xn) / fl(xn)
if math.abs(xnp| - xn) < epsilon:
break

xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Algorithms

= algorithm = mechanical problem-solving process
= usually given as a step-by-step procedure for computation

= Newton’s method is an example of an algorithm
= other examples:

= addition with carrying

= subtraction with borrowing

= long multiplication

* long division
= directly using Pythagora’s formula is not an algorithm

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Divide et Impera

* latin, means “divide and conquer” (courtesy of Julius Caesar)
= ldea: break down a problem and recursively work on parts
= Example: guessing a number by bisection
def guess(low, high):
if low == high:
print "Got you! You thought of: ", low
else:
mid = (low+high) / 2
ans = raw_input("ls "+str(mid)+" correct (>, =, <)?")
if ans == ">": guess(mid,high)
elif ans == "<": guess(low,mid)

else: print "Yeehah! Got you!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Larger Programs

= assume you have large function computing wrong return value

= going step-by-step very time consuming

= ldea: use bisection,i.e., half the search space in each step

insert intermediate output (e.g. using print) at mid-point
2. if intermediate output is correct, apply recursively to 2" part

3. if intermediate output is wrong, apply recursively to |t part

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

