DM536 / DM550 Part I Introduction to Programming

Peter Schneider-Kamp
 petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM536/

RECURSION

Recursion

- a function can call other functions
- a function can call itself
- such a function is called a recursive function
- Example I:
def countdown(n):

$$
\text { if } \mathrm{n}<=0 \text { : }
$$

print "Ka-Boooom!"
else:
print n, "seconds left!"
countdown(n-I)
countdown(3)

Stack Diagrams for Recursion

Recursion

- a function can call other functions
- a function can call itself
- such a function is called a recursive function
- Example 2:
def polyline(t , n , length, angle): for i in range(n):
$\mathrm{fd}(\mathrm{t}$, length)
$\mathrm{lt}(\mathrm{t}$, angle)

Recursion

- a function can call other functions
- a function can call itself
- such a function is called a recursive function
- Example 2:
def polyline(t , n , length, angle):

$$
\text { if } n>0 \text { : }
$$

$\mathrm{fd}(\mathrm{t}$, length)
It(t, angle)
polyline(t, n - I, length, angle)

Infinite Recursion

- base case = no recursive function call reached
- we say the function call terminates
- Example I: $\mathrm{n}==0$ in countdown / polyline
- infinite recursion $=$ no base case is reached
- also called non-termination
- Example: def infinitely_often(): infinitely_often()
- Python has recursion limit 1000 - ask sys.getrecursionlimit()

Keyboard Input

- so far we only know input()
- what happens when we enter Hello?
- input() treats all input as Python expression <expr>
- for string input, use raw_input()
- what happens when we enter 42?
- raw_input() treats all input as string
- both functions can take one argument prompt
" Example I: a = input("first side: ")
- Example 2: name = raw_input("Your name:\n")
- "In" denotes a new line: print "HellolnWorldln!"

Debugging using Tracebacks

- error messages in Python give important information:
- where did the error occur?
- what kind of error occurred?
- unfortunately often hard to localize real problem
- Example:

Debugging using Tracebacks

- error messages in Python give important information:
- where did the error occur?
- what kind of error occurred?
- unfortunately often hard to localize real problem
- Example:

$$
\begin{aligned}
& \text { def determine_vat(base_price, vat_price): } \\
& \text { factor = float(base_price) / vat_price } \\
& \text { reverse_factor }=1 / \text { factor } \\
& \text { return reverse_factor }-1 \\
& \text { print determine_vat(} 400,500 \text {) }
\end{aligned}
$$

FRUITFUL FUNCTIONS

Return Values

- so far we have seen only functions with one or no return
- sometimes more than one return makes sense
- Example I: def $\operatorname{sign}(x)$:
if $x<0$: return - I
elif $x=0$:
return 0
else:
return I

Return Values

- so far we have seen only functions with one or no return
- sometimes more than one return makes sense
- Example I:

$$
\begin{gathered}
\text { def } \operatorname{sign}(x) \text { : } \\
\text { if } x<0 \text { : } \\
\text { return }-1 \\
\text { elif } x==0 \text { : } \\
\text { return } 0 \\
\text { return I }
\end{gathered}
$$

- important that all paths reach one return

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($x 1, y 1, x 2, y 2$):
print "x| yl x2 y2:", xl, yl, x2, y2

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ def distance($x 1, y l, x 2, y 2$):

print "xl yl x2 y2:", xl, yl, x2, y2
$\mathrm{dx}=\mathrm{x} 2-\mathrm{xl} \quad \#$ horizontal distance print "dx:", dx

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

> print "xl yl x2 y2:", xl, yl, x2, y2
> $d x=x 2-x \mathrm{ll} \quad$ \# horizontal distance
> print "dx:", dx
$d y=y 2-y l \quad$ \# vertical distance
print "dy:", dy

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{aligned}
& \text { print "xl yl x2 y2:", xI, yl, x2, y2 } \\
& d x=x 2-x \mathrm{l} \quad \text { \# horizontal distance } \\
& \text { print "dx:", dx } \\
& \text { dy = y2 - yl } \quad \text { \# vertical distance } \\
& \text { print "dy:", dy } \\
& d x s=d x * 2 ; \text { dys = dy**2 } \\
& \text { print "dxs dys:", dxs, dys }
\end{aligned}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{aligned}
& \text { print "xlyl x2 y2:", xl, yl, x2, y2 } \\
& \begin{array}{ll}
d x=x 2-x l & \text { \# horizontal distance } \\
d y=y 2-y l \quad \text { \# vertical distance } \\
d x s=d x * 2 ; ~ d y s ~=~ d y * * 2 ~
\end{array} \\
& \text { print "dxs dys:", dxs, dys }
\end{aligned}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{aligned}
& \text { print "xl yl x2 y2:", xl, yl, x2, y2 } \\
& \mathrm{dx}=\mathrm{x} 2-\mathrm{xl} \quad \text { \# horizontal distance } \\
& \text { dy }=\mathrm{y} 2-\mathrm{yl} \quad \text { \# vertical distance } \\
& d x s=d x * * 2 ; \text { dys }=d y * * 2 \\
& \text { print "dxs dys:", dxs, dys } \\
& \mathrm{ds}=\mathrm{dxs}+\mathrm{dys} \quad \text { \# square of distance } \\
& \text { print "ds:", ds }
\end{aligned}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{aligned}
& \begin{array}{ll}
\text { print "xlyl x2 y2:", } x 1, y l, x 2, y 2 \\
d x=x 2-x l & \text { \# horizontal distance } \\
d y=y 2-y l & \text { \# vertical distance } \\
d x s=d x * * 2 ; ~ d y s ~=~ d y * * 2 ~
\end{array} \\
& \begin{array}{ll}
d s=d x s+d y s \quad \text { \# square of distance } \\
\text { print "ds:", ds }
\end{array}
\end{aligned}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

> print "xl yl x2 y2:", xl, yl, x2, y2
> $\mathrm{dx}=\mathrm{x} 2-\mathrm{xl} \quad$ \# horizontal distance
> $d y=y 2-y l \quad \#$ vertical distance
> $d x s=d x * * 2 ; d y s=d y * * 2$
> $\mathrm{ds}=\mathrm{dxs}+\mathrm{dys} \quad \#$ square of distance
> print "ds:", ds
> d = math.sqrt(ds) \# distance
print d

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{array}{ll}
\text { print "x| yl x2 y2:", xl, yl, x2, y2 } \\
d x=x 2-x I & \text { \# horizontal distance } \\
d y=y 2-y l & \text { \# vertical distance } \\
d x s=d x * * 2 ; ~ d y s= & d y * * 2 \\
d s=d x s+d y s & \text { \# square of distance } \\
d=\text { math.sqrt(ds) } & \text { \# distance } \\
\text { print } d
\end{array}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$):

$$
\begin{array}{ll}
\text { print "x| yl x2 y2:", } x \mathrm{I}, \mathrm{yl}, \mathrm{x} 2, \mathrm{y} 2 \\
\mathrm{dx}=\mathrm{x} 2-\mathrm{xI} & \text { \# horizontal distance } \\
\mathrm{dy}=\mathrm{y} 2-\mathrm{yl} & \text { \# vertical distance } \\
\mathrm{dxs}=\mathrm{dx**} 2 ; \text { dys }= & d y * * 2 \\
\mathrm{ds}=\mathrm{dxs}+\mathrm{dys} & \text { \# square of distance } \\
\mathrm{d}=\text { math.sqrt(ds) } & \text { \# distance }
\end{array}
$$

print d
return d

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) def distance $(\mathrm{x} 1, \mathrm{y} \mathrm{l}, \mathrm{x} 2, \mathrm{y} 2)$:

$$
\begin{array}{ll}
d x=x 2-x l & \text { \# horizontal distance } \\
d y=y 2-y l & \text { \# vertical distance } \\
d x s=d x * 2 ; ~ d y s=d y * * 2 \\
d s=d x s+d y s & \text { \# square of distance } \\
d=\text { math.sqrt(ds) } & \text { \# distance } \\
\text { return } d
\end{array}
$$

Incremental Development

- Idea: test code while writing it
- Example: computing the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ def distance ($x 1, y l, x 2, y 2$):

$$
\begin{array}{ll}
d x=x 2-x l & \text { \# horizontal distance } \\
d y=y 2-y l & \text { \# vertical distance } \\
\text { return math.sqrt(} d x * * 2+d y * * 2)
\end{array}
$$

Incremental Development

- Idea: test code while writing it
I. start with minimal function

2. add functionality piece by piece
3. use variables for intermediate values
4. print those variables to follow your progress
5. remove unnecessary output when function is finished

Composition

- function calls can be arguments to functions
- direct consequence of arguments being expressions
- Example: area of a circle from center and peripheral point
def area(radius):
return math.pi $*$ radius**2
def area_from_points(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides (x, y) :

```
if y/ x*x == y: # remainder of integer division is 0
return True
return False
```


Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides (x, y) :

```
if y % x == 0: # remainder of integer division is 0
return False
```


Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides(x, y): return $y \% x==0$

Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides (x, y) :

$$
\text { return } y \% x==0
$$

def even(x):
return divides $(2, x)$

Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides(x, y): return $y \% x==0$
def even(x):
return divides $(2, x)$
def odd(x):
return not divides(2, x)

Boolean Functions

- boolean functions $=$ functions that return True or False
- useful e.g. as <cond> in a conditional execution
- Example:
def divides(x, y): return $y \% x==0$
def even(x):
return divides $(2, x)$
def odd(x):
return not even(x)

RECURSION: SEE RECURSION

Recursion is "Complete"

- so far we know:
- values of type integer, float, string
- arithmetic expressions
- (recursive) function definitions
- (recursive) function calls
- conditional execution
- input/output
- ALL possible programs can be written using these elements!
- we say that we have a "Turing complete" language

Factorial

- in mathematics, the factorial function is defined by
- $0!=1$
- n ! $=\mathrm{n}$ * ($\mathrm{n}-\mathrm{I}$)!
- such recursive definitions can trivially be expressed in Python
- Example:

```
def factorial(n):
    if }\textrm{n}==0\mathrm{ :
            return I
    recurse = factorial(n-I)
    result = n * recurse
    return result
x = factorial(3)
```


Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I}
$$

factorial

$$
\mathrm{n} \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \text { I }
$$

factorial

$$
\mathrm{n} \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
\mathrm{n} \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
n \rightarrow 2 \quad \text { recurse } \rightarrow 1
$$

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

factorial

$$
\mathrm{n} \rightarrow 2 \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow 2
$$

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3
$$

2
factorial $\mathrm{n} \rightarrow \mathbf{2}$ recurse \rightarrow I result $\rightarrow \mathbf{2}$
factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3 \text { recurse } \rightarrow 2
$$

$$
\mathrm{n} \rightarrow 2 \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow 2
$$

factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

__main

factorial

$$
n \rightarrow 3 \text { recurse } \rightarrow 2 \text { result } \rightarrow 6
$$

factorial

```
\(\mathbf{n} \rightarrow \mathbf{2}\) recurse \(\rightarrow\) I result \(\rightarrow \mathbf{2}\)
```

factorial
$\mathrm{n} \rightarrow$ I recurse \rightarrow I result \rightarrow I
factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

factorial

$$
\mathrm{n} \rightarrow 3 \text { recurse } \rightarrow 2 \text { result } \rightarrow 6
$$

factorial

```
n }->\mathbf{2}\mathrm{ recurse }\boldsymbol{->}|\quad\mathrm{ l result }->\mathbf{2
```

factorial

$$
\mathrm{n} \rightarrow \mathrm{I} \quad \text { recurse } \rightarrow \mathrm{I} \quad \text { result } \rightarrow \mathrm{I}
$$

factorial

$$
n \rightarrow 0
$$

Stack Diagram for Factorial

Leap of Faith

- following the flow of execution difficult with recursion
- alternatively take the "leap of faith" (induction)
- Example:

$$
\begin{aligned}
& \text { def factorial(} \mathrm{n} \text {): } \\
& \text { if } n=0 \text { : } \\
& \text { check the } \\
& \text { base case } \\
& \text { assume recursive } \\
& \text { call is correct } \\
& \text { result }=n * \text { recurse } \\
& \text { return result } \\
& x=\text { factorial(3) }
\end{aligned}
$$

Control Flow Diagram

- Example:

def factorial(n):
if $n=0$:
return I
recurse $=$ factorial $(\mathrm{n}-\mathrm{I})$
result $=\mathrm{n}$ * recurse return result
return I

Fibonacci

- Fibonacci numbers model for unchecked rabbit population
- rabbit pairs at generation n is sum of rabbit pairs at generation n - 1 and generation n -2
- mathematically:
- $\mathrm{fib}(0)=0, f i b(I)=I, f i b(n)=f i b(n-I)+f i b(n-2)$
- Pythonically:

$$
\begin{array}{ll}
\text { def fib(n): } & \\
\text { if } n=0 \text { : } & \text { return } 0 \\
\text { elif } n==I: & \text { return } I \\
\text { else: } & \text { return fib(} n-I)+ \text { fib }(n-2)
\end{array}
$$

" "leap of faith" required even for small n !

Control Flow Diagram

Types and Base Cases

def factorial(n):

```
if }n==0\mathrm{ :
    return I
recurse = factorial(n-I)
result = n * recurse
return result
```

- Problem: factorial(I.5) exceeds recursion limit
- factorial(0.5)
- factorial(-0.5)
- factorial(-I.5)

Types and Base Cases

```
def factorial(n):
if n == 0:
        return I
recurse = factorial(n-I)
result = n * recurse
return result
```

- Idea: check type at beginning of function

Types and Base Cases

def factorial(n):
if not isinstance(n, int):
print "Integer required"; return None
if $\mathrm{n}==0$:
return I
recurse $=$ factorial(n-I)
result $=n *$ recurse
return result

- Idea: check type at beginning of function

Types and Base Cases

def factorial(n):
if not isinstance(n , int):
print "Integer required"; return None
if $\mathrm{n}<0$:
print "Non-negative number expected"; return None
if $\mathrm{n}==0$:
return I
recurse $=$ factorial(n-I)
result $=n *$ recurse
return result

- Idea: check type at beginning of function

Debugging Interfaces

- interfaces simplify testing and debugging
I. test if pre-conditions are given:
- do the arguments have the right type?
- are the values of the arguments ok?

2. test if the post-conditions are given:

- does the return value have the right type?
- is the return value computed correctly?

3. debug function, if pre- or post-conditions violated

Debugging (Recursive) Functions

- to check pre-conditions:
- print values \& types of parameters at beginning of function
- insert check at beginning of function (pre assertion)
- to check post-conditions:
- print values before return statements
- insert check before return statements (post assertion)
- side-effect: visualize flow of execution

ITERATION

Multiple Assignment Revisited

- as seen before, variables can be assigned multiple times
- assignment is NOT the same as equality
- it is not symmetric, and changes with time
- Example:

$$
\begin{aligned}
& a=42 \\
& \ldots \\
& b=a \\
& \ldots \\
& a=23
\end{aligned}
$$

from here,

Updating Variables

- most common form of multiple assignment is updating
- a variable is assigned to an expression containing that variable
- Example:

$$
\begin{aligned}
& x=23 \\
& \text { for } i \text { in range }(19) \text { : } \\
& \quad x=x+1
\end{aligned}
$$

- adding one is called incrementing
- expression evaluated BEFORE assignment takes place
- thus, variable needs to have been initialized earlier!

Iterating with While Loops

- iteration $=$ repetition of code blocks
- can be implemented using recursion (countdown, polyline)
- while statement:

$$
\begin{aligned}
&<\text { while-loop> => } \quad \text { while }<\text { cond }>: \\
& \quad<\text { instr }_{1}>;<\text { instr }_{2}>;<\text { instr }_{3}>
\end{aligned}
$$

- Example: def countdown(n): while $\mathrm{n}>0$: print "Ka-Boom!"
countdown(3)

Termination

- Termination $=$ the condition is eventually False
- loop in countdown obviously terminates:

$$
\text { while } \mathrm{n}>0: \quad \mathrm{n}=\mathrm{n}-\mathrm{l}
$$

- difficult for other loops:

$$
\begin{aligned}
& \text { def collatz(n): } \\
& \text { while } \mathrm{n}!=\mathrm{I} \text { : }
\end{aligned}
$$

print n,

$$
\text { if } \mathrm{n} \% 2==0: \quad \# \mathrm{n} \text { is even }
$$

$$
\mathrm{n}=\mathrm{n} / 2
$$

else:
\# n is odd

$$
\mathrm{n}=3 * \mathrm{n}+\mathrm{l}
$$

Termination

- Termination $=$ the condition is eventually False
- loop in countdown obviously terminates: while $\mathrm{n}>0: \quad \mathrm{n}=\mathrm{n}-\mathrm{l}$
- can also be difficult for recursion: def collatz(n):

$$
\text { if } n!=1 \text { : }
$$

print n,
if $\mathrm{n} \% 2==0: \quad \# \mathrm{n}$ is even collatz(n / 2)
else:
\# n is odd
collatz $(3 * n+I)$

Breaking a Loop

- sometimes you want to force termination
- Example:
while True:
num = raw_input('enter a number (or "exit"):In')
if num == "exit":
$\sqrt{\mathrm{n}=\operatorname{int}(\text { num })} \begin{gathered}\text { print "Square of", } \mathrm{n} \\ \text { print "Thanks a lot!" }\end{gathered}$

Approximating Square Roots

- Newton's method for finding root of a function f:
I. start with some value x_{0}

2. refine this value using $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$

- for square root of a: $f(x)=x^{2}-a \quad f^{\prime}(x)=2 x$
- simplifying for this special case: $x_{n+1}=\left(x_{n}+a / x_{n}\right) / 2$
- Example I: while True:
print xn

$$
\begin{aligned}
& x n p l=(x n+a / x n) / 2 \\
& \text { if } x n p l==x n: \\
& \quad \text { break }
\end{aligned}
$$

$x n=x n p l$

Approximating Square Roots

- Newton's method for finding root of a function f:
I. start with some value x_{0}

2. refine this value using $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$

- Example 2: $\quad \operatorname{def} f(x): \quad$ return $x^{* *} 3-$ math.cos (x) def $\mathrm{fl}(\mathrm{x})$: return $3^{*} \mathrm{x}^{* *} 2+$ math. $\sin (\mathrm{x})$ while True:
print xn

$$
\begin{aligned}
& x n p l=x n-f(x n) / f l(x n) \\
& \text { if } x n p l==x n: \\
& \text { break }
\end{aligned}
$$

xn = xnpl

Approximating Square Roots

- Newton's method for finding root of a function f:
I. start with some value x_{0}

2. refine this value using $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$

- Example 2: $\quad \operatorname{def} f(x): \quad$ return $x^{* *} 3-$ math.cos (x) def $\mathrm{fl}(\mathrm{x})$: return $3^{*} \mathrm{x}^{* *} 2+$ math. $\sin (\mathrm{x})$ while True:
print xn
$x n p l=x n-f(x n) / f l(x n)$
if math.abs(xnpl-xn) < epsilon: break
xn = xnpl

Algorithms

- algorithm $=$ mechanical problem-solving process
- usually given as a step-by-step procedure for computation
- Newton's method is an example of an algorithm
- other examples:
- addition with carrying
- subtraction with borrowing
- long multiplication
- long division
- directly using Pythagora's formula is not an algorithm

Divide et Impera

" latin, means "divide and conquer" (courtesy of Julius Caesar)

- Idea: break down a problem and recursively work on parts
- Example: guessing a number by bisection
def guess(low, high):
if low == high:
print "Got you! You thought of: ", low else:

```
mid = (low+high) / 2
ans = raw_input("ls "+str(mid)+" correct (>, =, <)?")
if ans == ">": guess(mid,high)
elif ans == "<": guess(low,mid)
else:
    print "Yeehah! Got you!"
```


Debugging Larger Programs

- assume you have large function computing wrong return value
- going step-by-step very time consuming
- Idea: use bisection, i.e., half the search space in each step
I. insert intermediate output (e.g. using print) at mid-point

2. if intermediate output is correct, apply recursively to $2^{\text {nd }}$ part
3. if intermediate output is wrong, apply recursively to $I^{\text {st }}$ part
