
DM536 / DM550 Part 1
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

MIDWAY EVALUATION

June 2009 2

Group Formation

§  Real world problem:
§  divide the students evenly to exactly 7 groups
§  do not count the students beforehand

§  Algorithm design:
§  repeatedly assign the numbers 1 to 7 to the students
§  sort according to the assigned numbers

§  Pseudo Python:
 sorted(zip(range(1,7+1)*9**9),students))

§  Implementation!

June 2009 3

Group Work

§  Time frame: max 10 minutes
§  Tasks:

1.  elect a speaker for the panel discussion
2.  find at least three items for each of the three columns:

June 2009 4

What has been good
during the course?

What has been less good? Suggestions for
improvements

1.

2.

3.

Panel Discussion

§  I will be the panel’s secretary J

§  Time frame: max 10 minutes

§  Three Phases:
1.  Presentation of the results of your group work.
2.  Panel discussion regarding whether and to which degree

you agree with the results of the other groups.
3.  Open discussion with the “secretary” and the whole

“class”.

June 2009 5

CLASSES & OBJECTS

June 2009 6

User-Defined Types

§  we want to represent points (x,y) in 2-dimensional space
§  which data structure to use?

§  use two variables x and y
§  store coordinates in a list or tuple of length 2
§  create user-defined type

§  we can use Python’s classes to implement new types
§  Example:
class Point(object):
 """represents a point in 2-dimensional space"""
print Point # class
p = Point() # create new instance of class Point
print p # instance

June 2009 7

Attributes

§  using dot notation, you can assign values to instance variables
§  Example: p.x = 3.0

 p.y = 4.0

§  instance variables are called attributes
§  attributes can be assigned to and read like any variable
§  Example: print "(%g, %g)" % (p.x, p.y)

 distance = math.sqrt(p.x**2 + p.y**2)
 print distance, "units from the origin"

June 2009 8

p
Point

x 3.0	

y	
 4.0	

§  rectangles can be represented in many ways, e.g.
§  width, height, and one corner or the center
§  two opposing corners

§  here we choose width, breadth and the lower-left corner
§  Example:
class Rectangle(object):
 "represents a rectangle using attributes width, height, corner”
box = Rectangle()
box.width = 5.0
box.height = 3.0
box.corner = p corner	

Point

x 3.0	

y	
 4.0	

box	

Rectangle

width	
 5.0	

height	
 3.0	

Representing a Rectangle

June 2009 9

Instances as Return Values

§  functions can return instances
§  Example: find the center point of a rectangle
def find_center(box):
 p = Point()
 p.x = box.corner.x + box.width / 2.0
 p.y = box.corner.y + box.height / 2.0
 return p
box = Rectangle()
box.width = 5.0; box.height = 3.0
box.corner = Point()
box.corner.x = 3.0; box.corner.y = 4.0
print find_center(box)

June 2009 10

Objects are Mutable

§  by assigning to attributes, an object is changed
§  Example: update size of rectangle

 box.width = box.width + 5.0
 box.height = box.height + 3.0

§  consequently, also functions can change object arguments
§  Example:

 def double_rectangle(box):
 box.width *= 2
 box.height *= 2
 double_rectangle(box)

June 2009 11

Copying Objects

§  import module copy to make copies of objects
§  Example: import copy

 new = copy.copy(box)

§  shallow copy, use copy.deepcopy(object) to also copy Point

June 2009 12

corner	

Point

x 3.0	

y	
 4.0	

box	

Rectangle

width	
 5.0	

height	
 3.0	

corner	

new	

Rectangle

width	
 5.0	

height	
 3.0	

Debugging User-Defined Types

§  you can obtain type of an instance by using type(object)
§  Example: print type(box)

§  you can check if an object has an attribute using hasattr
§  Example: hasattr(box, "corner") == True

§  you can get a list of all attributes using dir(object)
§  Example: dir(box)

§  print __doc__ and __module__ for more information!

June 2009 13

CLASSSES & FUNCTIONS

June 2009 14

Representing Time

§  Example: user-defined type for representing time
class Time(object):
 """represents time of day using hours, minutes, seconds"""
time = Time()
time.hours = 13
time.minutes = 57
time.seconds = 42

June 2009 15

time	

Time

hours	
 13	

minutes	
 57	

seconds	
 42	

Pure Functions

§  pure function = does not modify mutable arguments
§  Example: add two times
def add_time(t1, t2):
 sum = Time()
 sum.hours = t1.hours + t2.hours
 sum.minutes = t1.minutes + t2.minutes
 sum.seconds = t1.seconds + t2.seconds
 return sum
time = add_time(time, time)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 16

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds

increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

June 2009 17

Modifiers

§  modifiers = functions that modify mutable arguments
§  Example: incrementing time
def increment(time, seconds):
 time.seconds += seconds
 minutes, time.seconds = divmod(time.seconds, 60)
 time.minutes += minutes
 time.hours, time.minutes = divmod(time.minutes, 60)
increment(time, 86400)
print "%dh %dm %ds" % (time.hours, time.minutes, time.seconds)

§  this was prototype and patch (or trial and error)

June 2009 18

Prototyping vs Planning

§  alternative to prototyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def add_time(t1, t2):
 return int_to_time(time_to_int(t1) + time_to_int(t2))

June 2009 19

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 t = int_to_time(seconds + time_to_int(time))
 time.seconds = t.seconds; time.minutes = t.minutes
 time.hours = t.hours

June 2009 20

Prototyping vs Planning

§  alternative to protyping is planned development
§  high-level observation: time representable by just seconds
§  Example: refactoring function working with time
def time_to_int(time):
 return time.seconds + 60 * (time.minutes + 60 * time.hours)
def int_to_time(seconds):
 time = Time(); minutes, time.seconds = divmod(seconds, 60)
 time.hours, time.minutes = divmod(minutes, 60); return time
def increment(time, seconds):
 return int_to_time(seconds + time_to_int(time))

June 2009 21

Debugging using Invariants

§  invariant = requirement that is always true
§  assertion = statement of an invariant using assert
§  Example: check that time is valid
def valid_time(time):
 if time.hours < 0 or time.minutes < 0 or time.seconds < 0:
 return False
 return time.minutes < 60 and time.seconds < 60
def add_time(t1, t2):
 assert valid_time(t1) and valid_time(t2)
 return int_to_time(time_to_int(t1) + time_to_int(t2))
§  also useful to check before return value

June 2009 22

CLASSES & METHODS

June 2009 23

Object-Oriented Features

§  object-oriented programming in a nutshell:
§  programs consists of class definitions and functions
§  classes describe real or imagined objects
§  most functions and computations work on objects

§  so far we have only used classes to store attributes
§  i.e., functions were not linked to objects

§  methods = functions defined inside a class definition
§  first argument is always the object the method belongs to
§  calling by using dot notation
§  Example: "Slartibartfast".count("a")

June 2009 24

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t

June 2009 25

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds""”
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t

def print_time(time):
 t = (time.hours, time.minutes, time.seconds)
 print "%02dh %02dm %02ds" % t
 June 2009 26

Printing Objects

§  printing can be done by a normal function
§  better done with a method
§  Example:
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def print_time(self):
 t = (self.hours, self.minutes, self.seconds)
 print "%02dh %02dm %02ds" % t
end = Time()
end.hours = 12; end.minutes = 15; end.seconds = 37
Time.print_time(end) # what really happens
end.print_time() # how to write it!

June 2009 27

Incrementing as a Method

§  Example: add increment as a method
class Time(object):
 """represents time of day using hours, minutes, seconds"""
 def time_to_int(self):
 return self.seconds + 60 * (self.minutes + 60 * self.hours)
 def int_to_time(self, seconds):
 minutes, self.seconds = divmod(seconds, 60)
 self.hours, self.minutes = divmod(minutes, 60)
 def increment(self, seconds):
 return self.int_to_time(seconds + self.time_to_int())

June 2009 28

