
DM550/DM857
Introduction to Programming

Fall 2017 Re-exam Project (Python)

Department of Mathematics and Computer Science
University of Southern Denmark

February 23, 2018



2

Introduction
The purpose of this project is to try in practice the use of programming
techniques and knowledge about the programming language Python. Please
make sure to read this entire note before starting your work on this project.
Pay close attention to the three sections sections below.

Exam Rules
This project is part of the re-exam for DM550 and DM857. To pass the
re-exam this Python project (or the one from the ordinary exam) and a Java
project (from the re-exam or from the ordinary exam) have to be passed in
order to pass the overall exam. This Python project has to done individually.

Deliverables
A project report (at least 6 pages without front page and appendix) contain-
ing the following 6 sections has to be delivered:

• front page (course number, name, section, date of birth)

• specification (what the program is supposed to do)

• design (how the program was planned)

• implementation (how the program was written)

• testing (what tests you performed)

• conclusion (how satisfying the result is)

The report has to be delivered as a PDF file (suffix .pdf) together with the
Python source code files (suffix .py) and any needed supporting data files
electronically using Blackboard’s SDU Assignment functionality. No printed
copies are required. Do not forget to include the complete source
code!

Deadlines

March, 23, 2018, 23:59

Late deliveries cannot be accepted, so please plan your time accordingly.



3

Part 1

Julius Caesar scrambled his messages by shifting every letter of a word by
a certain number of steps in the alphabet. We have two functions, encrypt
that scrambles a message into a seemingly senseless text and decrypt that
unscrambles a given text into the original message.

The key in this scrambling method is the number of steps a letter is
shifted. If we know this number, we can unscramble by shifting all letters
back by the same number. Consider the following examples:

• shifting b by 5: b→ c→ d→ e→ f → g (result is g)

• shifting w by 6: w → x→ y → z → a→ b→ c (result is c)

• shifting g back by 5: g → f → e→ d→ c→ b (result is b)

Your task in this part of the project is to write a Python program that reads
a text from an input file given as a first argument, asks the user for a key
(the number of shifts) and whether to decrypt or encrypt. The resulting text
is then printed to the screen. If an output file is given as a second argument,
the resulting text should additionally be written to that output file.

The Input
The input is a normal message containing only words over the alphabet
a, b, . . . , z separated by whitespace. Thus, our input might look like this:

galia est

pacata

The Output
The output of your solver should also be a text containing only words over
the alphabet a, b, . . . , z separated by whitespace. Thus, our output for a shift
of 25 might look like:

fzkhz

drs

ozbzsz

The Task
Implement a function that handles the input and output from and to files
and from and to the user. Then implement two functions encrypt(key,

message) and decrypt(key, message) that scramble and unscramble as
described above. Use these functions in order to achieve the required be-
haviour.



4

Part 2

The Caesar cipher used in the first part of the project is not very secure.
There are two reasons for this. First, there are only 26 possible shifts (and
one does not change the plaintext). So it is possible to go through the 25
interesting shifts and look for the plain text.

Second, and more importantly, the letter frequency distribution of a nat-
ural language text is not random. In English, for example, the letter “e” is
by far the most common letter. Thus, when you are sure the plaintext is
in English, analyzing the letter frequency distribution of the encrypted text
will easily reveal the key used.

Your task in this part of the project is to write a Python program that
reads an encrypted English text from an input file given as a first argument
and a letter frequency distribution for English as the second argument. Then,
the English plaintext corresponding to the encrypted English text should be
printed to the screen. To this end, you will have to determine the key that
was used to encrypt the text. The key should be determined without user
interaction. If an output file is given as a third argument, the plaintext
should additionally be written to that output file.

The Input
The first input is an encrypted message containing arbitrary text, that is,
any kind of characters are allowed. You may assume, though, that only
the letters A,B, . . . , Z and a, b, . . . , z have been encrypted. Thus, our input
might look like this:

Puzaybjavyz jhu zluk lthps av hss vy zlsljalk pukpcpkbhs Bzlyz,
Zabkluaz, Nyvbwz, Alhjopun Hzzpzahuaz, Puzaybjavyz vy Viz-
lyclyz pu h Jvbyzl. Myvt h Ishjrivhyk Slhyu jvbyzl, lthpsz jhuuva
il zlua av hufvul dov pz uva h tltily vm aol jvbyzl.

The second input is a letter frequency distribution for English available as
engelsk.dat from the home page.

The Output
The output of your solver should be the English plain text corresponding to
the encrypted message:

Instructors can send email to all or selected individual Users,
Students, Groups, Teaching Assistants, Instructors or Observers
in a Course. From a Blackboard Learn course, emails cannot be
sent to anyone who is not a member of the course.



5

The Task
Implement a function that handles the inputs from files and the output to
the screen (and possibly to a file).

Write a class Histogram that uses a dictionary to keep frequency data.
There should be functions or an init method to build histograms both
from the given letter frequency data as well as from a given encrypted text.

Write a method for comparing the histogram obtained from the encrypted
text to the histogram from the given letter frequency data. This method
should return as a result the best guess for the key needed to decrypt the
given encrypted text. For the above example, this method should return 7.

Write a method that returns a list of letters (and possibly frequencies)
ordered by the frequency such that the most frequent letter comes first. This
method should be used by the above method to determine the key.

You decide which method to use for determining a potential key. For
inspiration, see the Wikipedia page on the Caesar cipher:

http://en.wikipedia.org/wiki/Caesar_cipher

Your implementation should at least be able to correctly decrypt two of the
three texts engelsk1.crypt, engelsk2.crypt, engelsk3.crypt, which you
can download from the course home page:

http://www.imada.sdu.dk/~petersk/DM550/#project

http://en.wikipedia.org/wiki/Caesar_cipher
http://www.imada.sdu.dk/~petersk/DM550/#project

