DM550 Introduction to Programming
Fall 2017 Re-re-exam Project (Python)

Department of Mathematics and Computer Science
University of Southern Denmark

July 2, 2018

Introduction

The purpose of this project is to try in practice the use of programming
techniques and knowledge about the programming language Python. Please
make sure to read this entire note before starting your work on this part of
the project. Pay close attention to the three sections below.

Exam Rules

This project is part of the re-re-exam for DM550. To pass the re-re-exam
this Python project (or the one from the ordinary exam or the re-exam) and
a Java project (from the re-re-exam or from the re-exam or form the ordinary
exam) have to be passed in order to pass the overal exam. This project hast
to be done individually.

Deliverables
A short project report (at least 6 pages without front page and appendix)
contain the following 6 sections has to be delivered:

e front page (course number, name, section, date of birth)
e specification (what the program is supposed to do)

e design (how the program was planned)

e implementation (how the program was written)

e testing (what tests you performed)

e conclusion (how satisfying the result is)

e appendix (complete source code)

The report has to be delivered as a single PDF file electronically using Black-
board’s SDU Assignment functionality. No printed copies are required. Do
not forget to include the complete source code!

Deadline

August 26, 2018, 23:59

Late deliveries cannot be accepted, so please plan your time accordingly.

The Problem

Your task in this part of the project is to write a solver for Kakuro puzzles.
Kakuro puzzles are a kind of crossword puzzles with numbers where the

following two conditions have to be met:

e In each consecutive row or column of empty fields, all numbers have to
be from the set {1,2,3,4,5,6,7,8,9} and they must all be different.

e For each consecutive row or column of empty fields, a number at the
to the left or above of the fields specifies the sum of all these numbers.

The following two figures show a Kakuro puzzle and its solution (taken from
Wikipedia, both graphics are under the GNU Free Documentation License).

239430 27T Q1216
16 24
17
17 29
15
35
12
8
7 7
6
11910
21
6
The Input

16

(%]
o

—
M

17

g~

35

—
M

2|0 (00|

—_

|00 O N

~|of;

—

o
.y
[=2]

21

W00
= O

N[B [=[a5E

N A
4 AR IS
N|=(w(o
=B

For input to your program, the Kakuro puzzles are represented as matrices
(lists of rows which are lists of fields) where the fields can be one of the
following five types, which can be distinguished by the types function:

e A frame block with no sum information (black in the graphics above)

is represented by the value (0,0).

e A frame block with sum information for a row (black lower left, number
N in upper right) is represented by the expression (0,N), e.g., (0,16)

or (0,24).

e A frame block with sum information for a column (number N in lower
left, black upper right) is represented by the value (N,0), e.g., (23,0).

e A frame block with sum information for a column and a row (number
N in lower left, number M in upper right) is represented by the value
(N,M, e.g., (15,29).

e An empty field is represented by just the value 0.
Thus, for our example above we obtain the following expression:

[[(0, 0), (23,0), (30, 0), (0, 0), (O, 0), (27,0), (12,0), (16,0)],

[(0,16), 0, 0, (0, 0), (17,24), 0, 0, 0],
[(0,17), 0, 0, (15,29), 0, 0, 0, 0],
[(0,35), 0, 0, 0, 0, 0, (12,0), (0,001,
[0, 00, (0,7), 0, 0, (7,8)), 0, 0, (7,01,
[0, 0), (11,0), (10,16), 0, 0, 0, 0, 0],
[(0,21), 0, 0, 0, 0, (0,5), 0, 0],
[0, 6), 0, 0, 0, (0, 0), (0,3), 0, 0]]
The Output

The output of your solver should also be a matrix. The representation is
similar to the one for the Input except for all single 0s being replaced by the
appropriate number. For our example we obtain the following expression:

(f¢co, 0), (23,0), (30, 0), CO0, 0, CO, 0, (27,0), (12,0), (16,0)],

[(0,16), 9, 7, (0, 0), (17,24), 8, 7, 9],
[(0,17), 8, 9, (15,29), 8, 9, 5, 7],
[(0,35), 6, 8, 5, 9, 7, (12,0), (0,00],
(o, 0), 0,7, 6, 1, (7, 8), 2, 6, (7,001,
[(0, 0), (11,0), (10,16), 4, 6, 1, 3, 2],
[(0,21), 8, 9, 3, 1, (0,5), 1, 4],
[0, 6), 3, 1, 2, (0, 0), (0,3, 2, 1]1]

The Task

Implement a function solve that takes an unsolved Kakuro puzzle as its
argument and returns its solved form. Also implement functions load and
store for loading and storing Kakuros from and to text files, respectively.
Finally, implement a main function that loads, solves and stores a Kakuro.
Keep in mind, that there are many different ways how to implement
the solve function. Explain your approach, implement it, and produce the
report. You could for example choose one of the following approaches:

e Use a generate-and-test approach, i.e., go through all solution candi-
dates and test them until you find a solution. This can be done either
recursively or iteratively.

e Implement solving rules as used by human players and use brute-force
only as a last resort.

