
DM 537 Object-Oriented Programming

Fall 2012 Project (Part 2)

Department of Mathematics and Computer Science
University of Southern Denmark

November 27, 2012



2

Introduction
The purpose of the project for DM537 is to try in practice the use of pro-
gramming techniques and knowledge about the programming language Java
on small but interesting examples.

The project consists of two parts.
Please make sure to read this entire note before starting your work on

this part of the project. Pay close attention to the sections on deadlines,
deliverables, and exam rules.

Exam Rules
This second part of the project is a part of the final exam. Both parts of the
project have to be passed to pass the course.

Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Deliverables
A short project report (at least 4 pages without appendix) has to be delivered.
This report has to contain the following 7 sections:

• front page (course number, name, section, date of birth)

• specification (what the ADT should be able to do)

• design (how to represent the ADT data and operations)

• implementation (how the ADT was implemented in Java )

• testing (what tests you performed)

• conclusion (how satisfying the result is)

• appendix (complete source code)

The report has to be delivered as a single PDF file electronically using Black-
board’s SDU Assignment functionality.

Deadline

Wednesday, January 9, 12:00



3

Project “Board Games: Tic Tac Toe & Co”

A game tree is a tree, where each node is representing a state of the game
and a node is child of another node if, and only if, its state is the direct
successor of that node. The root of the tree is the initial game state, i.e.,
where no player has yet made a move. The children of that root state are the
states resulting from all possible moves that Player 1 could have made. The
children of those children are likewise the states resulting from all possible
answering moves that Player 2 could have made.

For the second part of the project, we again consider n-way Tic-Tac-Toe
where n players play on a (n + 1) × (n + 1) grid and the first player to
put 3 marks in a row, column, or diagonal wins. Our goal is to construct
and visualize the complete game tree for n-way Tic-Tac-Toe. The screenshot
below shows a part of that game tree, up to a node, where Player 1 wins.

Task 0 – Preparation
On the course home page, you find a directory with a number of changed
(Game.java, GUI.java, and TTTGame.java) and new Java classes (GameTree.
java, GameTreeDisplay.java, GUIPanel.java, TTTExplorer). Download
all these classes to a new directory separate from your first part of the project.

Then download the unchanged classes (CLI.java, TicTacToe.java, and
UserInterface.java) from the first part of the project to the same directory.

Finally, copy your completed classes (Coordinate.java and TTTBoard.

java) from your solution for the first part of the project to the new directory.
Test those files by compiling and running TicTacToe.java. Fix the bug

in the copying constructor of TTTBoard.java by adding the line this.board
= new int[this.size][this.size]; before the two nested for loops.



4

Task 1 – Implement ADT
Your first task is to specify, design, and implement the ADT for Tic-Tac-Toe
game trees. Make sure that you satisfy the three following conditions:

• The class whose instances represent game trees is called TTTGameTree.

• Make sure that TTTGameTree implements the GameTree interface. This
is required for your ADT to be compatible with the GameTreeDisplay

user interface used by the main class TTTExplorer.

• The class TTTGameTree has a constructor that takes the number of
players and constructs an initial game tree with just the initial game
represented as the root of the tree.

Test your ADT by adding an empty implementation of the method public

void expand() and running TTTExplorer.

Task 2 – Building the Game Tree
Your next task is to build a fully functioning method public void expand(),
that will iteratively or recursively add children to the root node and its de-
scendants until a winning state or a draw is reached. The result should be
the full game tree.

Test your expansion by running TTTExplorer and analyzing the game tree
by hand. Correct any mistakes that you find until your game tree contains
all possible games. You might need to give more RAM to the Java Runtime
Environment. This is usually done by adding the parameter “-Xmx2048m”
after “java” for a maximum of 2 GByte of RAM.

One possible approach is to use a java.util.Queue to store the nodes
that still have to be visited. Initially, this is just the root node. Then, while
the queue still has some elements, the first element is retrieved using the poll
method. All successor game states for that node are computed and added
as children of that node. These new nodes are then added to the Queue

object, such that they will be handled in a later iteration. This implements
an iterative breadth-first search.



5

Task 3* – Reducing the Size of the Game Tree
Your first challenge task is to reduce the memory footprint of the game
tree. To this end, in the public void expand() method you should keep
a java.util.Map from games (instances of TTTGame) to nodes of your tree.
Whenever you create a new node, add a mapping from its game to the node
to this map. Before creating a new node, look if you already have a node for
the current game. If so, reuse that node. In this way, the memory footprint
can be reduced by orders of magnitude. For this to work, you have to imple-
ment public int hashCode() and public boolean equals(Object obj)

for the TTTGame class. Remember that hashCode needs to return identical
numbers for game states that are considered equal according to equals.

You can also try to reduce the number of game states by considering
states that are equal with respect to rotation and/or flipping only once. For
this, you will have to at least adapt your hashCode and equals methods.

Note that this task is optional and does not have to be solved for this
part of the project to be considered as passed.

Task 4* – Artificial Intelligence
Your second challenge task is to modify the Tic-Tac-Toe implementation in
such a way that a game tree is used to implement an AI player to play
against the human player. I.e., when starting TicTacToe, first the game
tree is computed. Then the human player and the AI player take turns
making moves. The AI player uses the game tree in any situation to make
moves that give it the best possible result (win or draw, if possible from the
current state). You can also implement two or more AI players, such that
the computer can play against itself.

Note that this task is optional and does not have to be solved for this
part of the project to be considered as passed.


