&,
—

JAVA
DM537

Object-Oriented Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM537/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

COLLECTION CLASSES &
GENERIC PROGRAMMING

Java Collections Framework

= Java comes with a wide library of collection classes
= Examples:

= ArrayList

= TreeSet

= HashMap

" idea is to provide well-implemented standard ADTs
= your own ADTs can build upon this foundation

= collection classes store arbitrary objects

= all collection classes implement Collection or Map
= thus, simple and standardized interface across different classes

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generic Types (revisited)

" type casts for accessing elements are unsafe!
= solution is to use generic types

= instead of using an array of objects, use array of some type E
= Example:

public class MyArrayList<E> implements List<E> {
private E[] data;

public E get(int i) {
return this.data[i];

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generic Programming

= the use of generic types is referred to as generic programming
= generic types can and should be used:

= by the user of collection classes
= Example: List<String> list = new ArrayList<String>();

= when implementing ADTs
= Example: public class MyCollection<E> ...

= when implementing constructors and methods
= Example: public E getElement(int index) { ... }

= when implementing static functions
= Example: public <E> void add(ListNode<E> n, E elem);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generic Programming

= when a class has parameter type <E>, E is used like normal type
" instances of the class are defined by substituting concrete type

= Example: public class Mine<E> ... Mine<String> mine = ...

= more than one parameter is possible

= Example: public interface Map<K,vV>

= when defining static function, prefix return type by parameter <E>
* inside function, E is used like normal type
= Example: public <E> void add(ListNode<E> n, E elem);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generic Programming

= we can define that a parameter type extends some interface/class
= Example:

public interface BinTree<E extends Comparable>{ ... }
= then all types E are usable, that implement Comparable

= using “?” we can define wildcard types
= Example:

public boolean addAll(Collection<? extends E> c) { ... }
" here, elements can be any type that extends E

= the same works with “? super E”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Collection ADT: Specification

* interface Collection<E> specifies standard operations
* boolean isEmpty(); I true, if there are no elements
" int size(); Il returns number of elements
" boolean contains(Object 0); // is object element!?
* boolean add(E e); // add an element; true if modified
" boolean remove(Object 0); // remove an element
" |terator<E> iterator(); /I iterate over all elements
* boolean addAll(Collection<? extends E> c); //addall ...
= clear, containsAll, removeAll, retainAll, toArray, ...

= operations make sense both for lists, queues, stacks, sets, ...

* next:interface lterator<gE>

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Iterator ADT: Specification

" iterate over elements of collections (= data)
= operations defined by interface Iterator<k>:

public interface Iterator<t> {

public boolean hasNext(); /I is there another element?
public E next(); /I get next element
public void remove(); /Il remove current element

= can be used to access all elements of the collection

= order is determined by specification or implementation

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Iterator ADT: Example |

= Example (iterate over all elements of an ArrayList):
ArrayList<String> list = new ArrayList<String>();
list.add("Hej");
list.add("med");
list.add("dig");
Iterator<String> iter = list.iterator();
while (iter.hasNext()) {
String str = iter.next();
System.out.printin(str);

}

" no need to iterative over indices 0, I, ..., list.size()-|

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Extended for Loop

= also called “for each loop”
" iterative over each element of an array or a collection
= Example | (summing elements of an array):
int[] numbers = new int[] {I,2,3,5,7, 11, 13};
int sum = 0;
for (int n : numbers) {
sum += n;
}
= Example 2 (multiplying elements of a list):
List<Integer> list = new ArrayList(Arrays.asList(numbers));
int prod = |;
for (inti:list) { prod *=i; }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List ADT: Usage

* interface List<E> extends Collection<E>

= additional operation that make no sense for non-lists (e.g. get)

= can be sorted by static method in class Collections

= Example:
int[] numbers = new int[] {I,2,3,5,7, I, 13};
List<Integer> list = new ArrayList(Arrays.asList(numbers));
Collections.sort(list);

" requires that elements implement Comparable

= full signature:
public static <T extends Comparable<? super T>> void

sort(List<T> list);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List ADT: Implementations

= ArrayList based on dynamic arrays
= very good first choice in >90% of applications
LinkedList based on doubly-linked lists

= has prev member variable pointing to previous list node
= useful when adding and removing a lot in the middle
" do not use for Queue — use ArrayDeque instead!

= Vector based on dynamic arrays

= old implementation, not synchronized — use ArrayList!

Stack based on Vector

" do not use for Stack — use ArrayDeque instead!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Queue ADT: Specification & Implem.

= interface Queue<E> extends Collection<E>
= data are arbitrary objects of type E

= defines additional operations over Collection<E>:

= public boolean offer(E e); /I alternative name to add
= public E peek(); Il return head

= public E element(); // alternative name to peek
= public E poll(); // remove and return head

= extended again by interface Deque<E> providing support for
adding AND removing at both ends

* Implementations:
= ArrayDeque — with offer == offerlLast and poll == pollFirst
= LinkedList — only useful, when not a pure Queue

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack ADT: Specification & Implem.

= class Stack<E> implements Collection<E>
= data are arbitrary objects of type E

= defines additional operations over Collection<E>:

= public E push(E e); // add on top of stack
= public E peek(); Il return top element
= public E pop(); // remove and return top

= public int search(Object 0); // return |-based index

= superseded by interface Deque<E> providing support for
adding AND removing at both ends

= Alternative Implementations:

= ArrayDeque — with push == addFirst and pop == removeFirst

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Deque ADT: Specification & Implem.

* interface Deque<E> extends Collection<E>
= data are arbitrary objects of type E
= defines additional operations over Collection<E>:
= addFirst, offerFirst, addLast, offerLast
= removeFirst, pollFirst, removelast, pollLast
= getFirst, peekFirst, getLast, peeklLast
= add*, remove*, get™ throw exceptions
= offer®, poll*, peek™ return special value
* Implementations:
* ArrayDeque — fast and preferred
= LinkedList — only use when more than Deque needed

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Set ADT: Specification

" interface List<E> extends Collection<E>

= unordered sequences of objects without duplicates

* no additional operations, as Collection<E> already specifies
= isEmpty, size, contains, add, remove, ...

" no index-based access to elements, as order undefined

= elements MUST implement equals and hashCode correctly:

|. for two elements el and e2 that are equal, both
el.equals(e2) and e2.equals(el) must return true

2. for two elements el and e2 that are equal, we must have
el.hashCode() == e2.hashCode()

3. for two elements el and e2 that are NOT equal, both
el.equals(e2) and e2.equals(el) must return false

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Set ADT: Example

= Example (intersecting two sets):
int[] nl = new int[] {1,2,3,5,7, 11, 13};
Set<Integer> set|l = new HashSet<Integer>(Arrays.asList(nl));
int[] n2 = new int[] {I, 3,5,7,9};
Set<Integer> set2 = new HashSet<Integer>(Arrays.asList(n2));
Set<Integer> set3 = new HashSet<Integer>(setl);
set3.retainAll(set2);
= retainAll modifies set3, thus we have (informally):
= setl =={1,2,3,5,7,11, 13}
= set2 =={l,3,5,7,9}
= set3 =={I,3,5,7}

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Iterator ADT: Example 2

= Example (iterate over all elements of a HashSet):

Set<String> set = new HashSet<String>();

set.add("Hej");

set.add("hej");

set.add("Hej");

Iterator<String> iter = set.iterator();

while (iter.hasNext()) {
String str = iter.next();
System.out.println(str);

}

= prints the two strings in some undefined order

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interface Comparator

= allows to specify how to compare elements
public interface Comparator<g> {
public int compare(T ol, T 02); // compare ol and 02
public boolean equals(Object obj); // equals other Comparator?
}
= compare behaves like ol.compareTo(o2) from Comparable<E>
* <0for ol less than 02
= ==0 for ol equals 02
= >0 for ol greater than 02
= Comparable defines natural ordering

= Comparator can define additional orderings

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Set ADT:TreeSet Implementation

= TreeSet implements sets as special sort trees (Red-Black Trees)
= elements are compared to according to natural ordering
= Example: public class Compi implements Comparator<Integer> {
public int compare(Integer il, Integer i2) {
return i2.compareTo(il); }
public boolean equals(Object other) { return false; } }
TreeSet<Integer> set|l = new TreeSet<Integer>();
setl.add(23); setl.add(42); setl.add(-3);
for (int n :setl) { System.out.print(" "+n); } // -3 23 42
TreeSet<Integer> set2 = new TreeSet<Integer>(new Compi());
set2.addAll(setl);
for (int n :set2) { System.out.print(" "+n); } // 42 23 -3

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Set ADT: Implementations

= HashSet based on hash tables
= very good choice if order really does not matter
* LinkedHashSet based on hash tables + linked list
* in addition to hash table keeps track of insertion order
= useful for keeping algorithms deterministic
" TreeSet based on special sort trees
= implements the SortedSet<E> interface
= useful for ordered sequences without duplicates
= can use Comparators for different orderings

= also useful when e.g. hash code not available

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Map ADT: Specification

= maps work like dictionaries in Python
* interface Map<K,V> specifies standard operations

" boolean isEmpty(); /[true, if there are no mappings

" int size(); // returns number of mappings

* boolean containsKey(Object key); /l'is key mapped!?

* boolean containsValue(Obiject value); // is value mapped!?
= V get(Object key); I/ return mapped value or null

= V put(K key,V value); // add mapping from key to value
= Set<K> keySet(); I set of all keys

= Collection<V> values(); Il collection of all values

= Set<Map.Entry<K,V>> entrySet(); // (key,value) pairs

= clear, putAll, remove, ...

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Map ADT: Example

= Example (using and modifying a phone directory):

Map<String,Integer> dir = new HashMap<String,Integer>();

dir.put("petersk", 65502327); dir.put("bwillis", 55555555);

for (String key : dir.keySet()) {
System.out.printin(key+" -> "+dir.get(key));

}

for (Map.Entry<String,Integer> entry : dir.entrySet()) {
System.out.printin(entry.getKey()+" -> "+entry.getValue());
entry.setValue(12345678);

}

dir.keySet().remove("bwillis");

System.out.printin(dir); // only petersk is mapped

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Hash Table

a hash table uses the hashCode method to map objects to ints
= objects are stored in an array

= the position of the object is determined by its hash code
modulo the length of the array

= Example: if o has hash code 10 and array has length 7,
o is stored at position 10 % 7 ==

= more in DM507 Algorithms and Data Structures
= efficient for get and put
= assuming that hashCode is implemented in a useful way

= if two or more objects have the same hash code, the array
stores a list of objects in that position

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Map ADT: Implementations

HashMap based on hash tables
= very good choice if order does not matter

LinkedHashMap based on hash tables + linked list
* in addition to hash table keeps track of insertion order

= useful for keeping algorithms deterministic
= TreeMap based on special sort trees
= implements the SortedMap<K,V> interface
= useful for ordered mappings
= can use Comparators for different orderings
= also useful when e.g. hash code not available
Hashtable based on hash tables

= old implementation — only use for synchronization

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

IN & OUTPUT
USING STREAMS

Streams

= streams are ADTs for representing input and output
= source for input can e.g. be files, keyboard, network resources
" output can go to e.g. files, terminal, network resources

= four categories of streams in java.io package:

| mpue | Output
InputStream OutputStream
m Reader Writer

" byte streams are for machine-readable data

* reading one unit is reading one byte (= 8 bits)
= character streams are for human-readable data
* reading one unit is reading one character (= |6 bits)

= readers/writers translate 8-bit files etc. into |6-bit unicode

%'UNIVERSITY OF SOUTHERN DENMARK.DK

InputStream ADT: Specification

= data = potentially infinite stream of bytes
= operations are given by the following interface:

public interface InputStreamADT {

public int available(); /' how much more can be read!?
public void close(); /I close the stream
public int read(); I/ next byte of the stream

public int read(byte[] b); // read n bytes into b and return n
public int read(byte[] b, int off, int len); // max len from b[off]
public long skip(long n); // skip n bytes

}

= all input byte streams are subclasses of java.io.InputStream

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

InputStream ADT: Example

= Example (reading up to 1024 bytes from a file):
InputStream input = new FilelnputStream(new File("test.txt"));
byte[] data = new byte[1024];
int readSoFar = 0;
do {
readSoFar += input.read(data, readSoFar, 1024-readSoFar);
} while (input.available() > 0 && readSoFar < 1024);
input.close();
System.out.printin("Got "+readSoFar+" bytes from test.txt!");

= if you think that is horrible ...
= ... you now understand, why we used java.util.Scanner ©

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

OutputStream ADT: Specification

= data = potentially infinite stream of bytes
= operations are given by the following interface:
public interface OutputStreamADT {
public void close(); /I close the stream
public void write(int b); // write b to the stream
public void write(byte[] b);// write b.length bytes from b
public void write(byte[] b, int off, int len); // len bytes from b[off]
public void flush(); I/ forces buffers to be written

}

= all output byte streams are subclasses of java.io.OutputStream

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

OutputStream ADT: Example

= Example (copying a file):
InputStream in = new FilelnputStream(new File("test.txt"));
OutputStream out = new FileOutputStream(new File("test.out"));
int total = 0;
byte[] block = new byte[4096];
while (true) {
int read = inp.read(block);
if (read == -1) { break; }
out.write(block, 0, read);
total += read;
} in.close(); out.close();
System.out.printin("Copied "+total+" bytes from test.txt!");

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Reader ADT: Specification

= data = potentially infinite stream of characters
= operations are given by the following interface:
public interface ReaderADT {

public boolean ready(); // input available!?
public void close(); /I close the stream
public int read(); Il next character of the stream

public int read(char[] c¢); // read n characters into ¢ and return n
public int read(char[] c, int off, int len); // max len from c[off]
public int read(CharBuffer target); Il read into CharBuffer
public long skip(long n); // skip n characters

}

= all input character streams are subclasses of java.io.Reader

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Reader ADT: Example

= Example (reading characters from a file):
Reader input = new FileReader(new File("test.txt"));
StringBuffer buffer = new StringBuffer();
while (true) {
int ch = input.read();
if (ch == -1) { break; }
buffer.append((char)ch);
}
input.close();
System.out.println("Read the following content:");
System.out.printin(buffer.toString());

= less horrible ... but we still prefer java.util.Scanner ©

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Writer ADT: Specification

= data = potentially infinite stream of characters

= operations are given by the following interface:

public interface WriterADT {
public void close(); /I close the stream
public void write(int c); // write one character to the stream
public void write(char[] c);// write c.length characters
public void write(char[] c, int off, int len); // len chars from c[off]
public void write(String s); // write s.length() characters
public void write(String s, int off, int len); // len chars from s at off
public void flush(); I/ forces buffers to be written

}

= all input character streams are subclasses of java.io.VWriter

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Writer ADT: Example

= Example (copying a text file character by character):
Reader in = new FileReader(new File("test.txt"));
Writer out = new FileWriter(new File("test.out"));
while (true) {
int ch = in.read();
if (ch == -1){ break; }
out.write(ch);

}

in.close();
out.close();

System.out.printin("Done!");

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Character vs Byte Streams

= Java has classes to convert between character and byte streams
= characters are converted according to specified char set

= default char set is |6-bit unicode

InputStreamReader DataOutputStream

eEigee)i dcn DatalnputStream OutputStreamWriter

* |nputStreamReader reads characters from byte stream

= DataOutputStream can be used to write primitive types + String
= QutputStreamWrite write characters to byte stream

= DatalnputStream can be used to read primitive types + String

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

PrintWriter & PrintStream

" classes that extend Writer and OutputStream
* add comfortable methods for printing and formatting data
= provide methods such as for example
= print — like in System.out.print
= println — like in System.out.printin
= printf — like in System.out.printf
* in fact, System.out is an instance of PrintStream
= Example (writing comfortably to a file):
File file = new File("test.out"); String name = "Peter”;
PrintStream out = new PrintStream(new FileOutputStream(file));
out.printf("Hej %s! How are you?\n", name);

out.close();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

NETWORKING &
MULTI-THREADING

Accessing Network Resources

= like File represents files, URL represents network resources
= Example | (downloading course web site into file):
URL url = new URL("http://imada.sdu.dk/~petersk/DM537/");
InputStream input = url.openStream();
OutputStream output = new FileOutputStream("dm537.html");
byte[] block = new byte[4096];
while (true) {
int read = input.read(block);
if (read == -1) { break; }
output.write(block, 0, read);

}

input.close(); output.close();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Accessing Network Resources

= like File represents files, URL represents network resources
= Example 2 (downloading course web site into file):
URL url = new URL("http://imada.sdu.dk/~petersk/DM537/");
Reader in = new InputStreamReader(url.openStream());
PrintStream output = new PrintStream(
new FileOutputStream("dm537.html"));
BufferedReader input = new BufferedReader(in);
while (true) {
String line = input.readLine();
if (line == null) { break; }
output.printin(line);

} input.close(); output.close();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

TCP/IP Sockets

= URL provides high-level abstraction

= for general TCP/IP connection, sockets are needed

= once socket connection is established, normal byte streams
= client-server model where server waits for client to connect

= for sockets, IP adress and port number needed
= Example: IP 130.225.157.85, Port 80 (IMADA web server)

= listening sockets implemented by class ServerSocket

= Example: ServerSocket ss = new ServerSocket(2342);

= connection between client and server instance of Socket

* Example: Socket sSock = ss.accept();
Socket sock = new Socket("127.0.0.1", 2342);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Example: TCP/IP Server

public class MyServer {
public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(2343);
while (true) {
Socket sock = server.accept();
InputStream in = sock.getlnputStream();
OutputStream out = sock.getOutputStream();
while (true) {
int read = in.read();
if (read == -1) { break; }
out.write(Character.toUpperCase((char)read));

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Example: TCP/IP Client

public class MyClient {
public static void main(String[] args) throws IOException {

Socket sock = new Socket("127.0.0.1", 2343);
InputStream in = sock.getlnputStream();
OutputStream out = sock.getOutputStream();
String userlnput = new Scanner(System.in).nextLine();
StringBuffer result = new StringBuffer();
for (char ch : userlnput.toCharArray()) {
out.write(ch);
result.append((char)in.read());
}

System.out.printin(result); } }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Example: Simple Chat Server

public class ChatServer {
public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(2343);
while (true) {

Socket sock = server.accept();
Scanner in = new Scanner(sock.getlnputStream());

PrintStream out = new PrintStream(sock.getOutputStream());
while (true) {

System.out.println(in.nextLine());

out.println(new Scanner(System.in).nextLine());

}

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Example: Simple Chat Client

public class ChatClient {
public static void main(String[] args) throws IOException {
Socket sock = new Socket("127.0.0.1", 2343);
Scanner in = new Scanner(sock.getlnputStream());
PrintStream out = new PrintStream(sock.getOutputStream());

while (true) {
out.println(new Scanner(System.in).nextLine());

System.out.println(in.nextLine());

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Theory and Practice

= our client-server implementations work fine
= BUT:

= network connections are not reliable

= there can be many clients

= answering queries can be time consuming
= multi-threading can solve these problems
= |dea:

= create a thread for each client connection

= the server is immediately responsive

= starving threads can be disposed of after some timeout

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multi-Threading

= threads can be started by creating instances of Thread
= Example (two threads counting up to | 000 000):
public class Counter extends Thread {
String name;
public Counter(String name) { this.name = name; }
public void run() {
for (int i=1;i<=1000000; i++) {

System.out.printf("%s: %i\n", name, i);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multi-Threading

= Example (continued):

public static void main(String[] args) {
Counter cl = new Counter("Fred");
Counter c2 = new Counter("George");

cl.start();
c2.start();

}

= start() creates a new thread and runs the run() method

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multi-Threaded Server

public class MultiServer {
public static void main(String[] args) throws IOException {
ServerSocket server = new ServerSocket(2343);
while (true) {
Socket sock = server.accept();

new MultiServerHandler(sock).start();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multi-Threaded Server

public class MultiServerHandler extends Thread {
private Socket sock;
public MultiServerHandler(Socket sock) {
this.sock = sock;

}
public void run() {

try {
Scanner in = new Scanner(sock.getlnputStream());
PrintStream out = new PrintStream(sock.getOutputStream());
while (true) { out.printin(in.nextLine().toUpperCase()); }

} catch (IOException e) {}

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

THE END

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

