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Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 1: 
 def countdown(n): 
     if n <= 0: 
         print "Ka-Boooom!" 
     else: 
         print n, "seconds left!" 
         countdown(n-1) 
 countdown(3) 
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Stack Diagrams for Recursion 
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Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 2: 
 def polyline(t, n, length, angle): 
     for i in range(n): 
         fd(t, length) 
         lt(t, angle) 
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Recursion 

§  a function can call other functions 
§  a function can call itself 
§  such a function is called a recursive function 

§  Example 2: 
 def polyline(t, n, length, angle): 
     if n > 0: 
         fd(t, length) 
         lt(t, angle) 
         polyline(t, n-1, length, angle) 
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Infinite Recursion 

§  base case   =   no recursive function call reached 
§  we say the function call terminates 

§  Example 1:   n == 0 in countdown / polyline 

§  infinite recursion  =   no base case is reached 
§  also called non-termination 

§  Example: 
 def infinitely_often(): 
     infinitely_often() 

 

§  Python has recursion limit 1000 – ask sys.getrecursionlimit() 
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Keyboard Input 

§  so far we only know input() 
§  what happens when we enter Hello? 
§  input() treats all input as Python expression <expr> 

§  for string input, use raw_input() 
§  what happens when we enter 42? 
§  raw_input() treats all input as string 

§  both functions can take one argument prompt 
§  Example 1:  a = input("first side: ") 
§  Example 2:  name = raw_input("Your name:\n") 
§  “\n” denotes a new line:  print "Hello\nWorld\n!" 
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Debugging using Tracebacks 

§  error messages in Python give important information: 
§  where did the error occur? 
§  what kind of error occurred? 

§  unfortunately often hard to localize real problem 
§  Example:  

   def determine_vat(base_price, vat_price): 
       factor = base_price / vat_price 
       reverse_factor = 1 / factor 
       return reverse_factor - 1 
   print determine_vat(400, 500) 
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Debugging using Tracebacks 

§  error messages in Python give important information: 
§  where did the error occur? 
§  what kind of error occurred? 

§  unfortunately often hard to localize real problem 
§  Example:  

   def determine_vat(base_price, vat_price): 
       factor = float(base_price) / vat_price 
       reverse_factor = 1 / factor 
       return reverse_factor - 1 
   print determine_vat(400, 500) 
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FRUITFUL FUNCTIONS 
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Return Values 

§  so far we have seen only functions with one or no return 
§  sometimes more than one return makes sense 

§  Example 1:   
 def sign(x): 
     if x < 0: 
         return -1 
     elif x == 0: 
         return 0 
     else: 
         return 1 
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Return Values 

§  so far we have seen only functions with one or no return 
§  sometimes more than one return makes sense 

§  Example 1:   
 def sign(x): 
     if x < 0: 
         return -1 
     elif x == 0: 
         return 0 
     return 1 

§  important that all paths reach one return 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
     dy = y2 - y1  # vertical distance 
     print "dy:", dy 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     print "dx:", dx 
     dy = y2 - y1  # vertical distance 
     print "dy:", dy 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     print "dxs dys:", dxs, dys 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     print "ds:", ds 
     d = math.sqrt(ds)  # distance 
     print d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     print d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     print "x1 y1 x2 y2:", x1, y1, x2, y2 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     print d 
     return d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     dxs = dx**2;  dys = dy**2 
     ds = dxs + dys  # square of distance 
     d = math.sqrt(ds)  # distance 
     return d 
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Incremental Development 

§  Idea:   test code while writing it 
§  Example:  computing the distance between (x1,y1) and (x2,y2) 

 def distance(x1, y1, x2, y2): 
     dx = x2 - x1  # horizontal distance 
     dy = y2 - y1  # vertical distance 
     return math.sqrt(dx**2 + dy**2) 
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Incremental Development 

§  Idea:   test code while writing it 

1.  start with minimal function 
2.  add functionality piece by piece 
3.  use variables for intermediate values 
4.  print those variables to follow your progress 
5.  remove unnecessary output when function is finished 
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Composition 

§  function calls can be arguments to functions 
§  direct consequence of arguments being expressions 

§  Example:  area of a circle from center and peripheral point 
 

 def area(radius): 
     return math.pi * radius**2 

 
 def area_from_points(xc, yc, xp, yp): 
     return area(distance(xc, yc, xp, yp)) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     if y / x * x == y:  # remainder of integer division is 0 
         return True 
     return False 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     if y % x == 0:  # remainder of integer division is 0 
         return True 
     return False 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 

 
 def odd(x): 
     return not divides(2, x) 
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Boolean Functions 

§  boolean functions  =   functions that return True or False 
§  useful e.g. as <cond> in a conditional execution 
§  Example: 

 def divides(x, y): 
     return y % x == 0 

 
 def even(x): 
     return divides(2, x) 

 
 def odd(x): 
     return not even(x) 
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RECURSION: 
SEE RECURSION 
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Recursion is “Complete” 

§  so far we know: 
§  values of type integer, float, string 
§  arithmetic expressions 
§  (recursive) function definitions 
§  (recursive) function calls 
§  conditional execution 
§  input/output 

§  ALL possible programs can be written using these elements! 
§  we say that we have a “Turing complete” language 
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Factorial 

§  in mathematics, the factorial function is defined by 
§  0! = 1 
§  n! = n * (n-1)! 

§  such recursive definitions can trivially be expressed in Python 
§  Example: 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 
 x = factorial(3) 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 

 __main__ 

 
 factorial 

 
 factorial 

 
 factorial 

 
 factorial 

 

June 2009 40 

 n è 3 

 n è 2 

 n è 1    recurse è 1    result è 1 

 n è 0 
1	





Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Stack Diagram for Factorial 
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Leap of Faith 

§  following the flow of execution difficult with recursion 
§  alternatively take the “leap of faith” (induction) 

§  Example: 
 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 
 x = factorial(3) 
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Control Flow Diagram 

§  Example:         def factorial(n): 
             if n == 0: 
                 return 1 
             recurse = factorial(n-1) 
             result = n * recurse 
             return result 
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Fibonacci 

§  Fibonacci numbers model for unchecked rabbit population 
§  rabbit pairs at generation n is sum of rabbit pairs at 

generation n-1 and generation n-2 

§  mathematically: 
§  fib(0) = 0,  fib(1) = 1,  fib(n) = fib(n-1) + fib(n-2) 

§  Pythonically: 
 def fib(n): 
     if n == 0:  return 0 
     elif n == 1:  return 1 
     else:  return fib(n-1) + fib(n-2) 

 

§  “leap of faith” required even for small n! 
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Control Flow Diagram 

§  Example:            def fib(n): 
     if n == 0: 
         return 0 
     elif n == 1: 
         return 1 
     else:   
         return fib(n-1) + fib(n-2) 
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Types and Base Cases 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

§  Problem:  factorial(1.5) exceeds recursion limit 

§  factorial(0.5) 
§  factorial(-0.5) 
§  factorial(-1.5) 
§  … 
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Types and Base Cases 

 def factorial(n): 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

 
 
 
 
 

§  Idea:   check type at beginning of function 
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Types and Base Cases 

 def factorial(n): 
     if not isinstance(n, int): 
         print "Integer required";  return None 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

 
 

§  Idea:   check type at beginning of function 
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Types and Base Cases 

 def factorial(n): 
     if not isinstance(n, int): 
         print "Integer required";  return None 
     if n < 0: 
         print "Non-negative number expected";  return None 
     if n == 0: 
         return 1 
     recurse = factorial(n-1) 
     result = n * recurse 
     return result 

§  Idea:   check type at beginning of function 
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Debugging Interfaces 

§  interfaces simplify testing and debugging 

1.  test if pre-conditions are given: 
§  do the arguments have the right type? 
§  are the values of the arguments ok? 

2.  test if the post-conditions are given: 
§  does the return value have the right type? 
§  is the return value computed correctly? 

3.  debug function, if pre- or post-conditions violated 
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Debugging (Recursive) Functions 

§  to check pre-conditions: 
§  print values & types of parameters at beginning of function 
§  insert check at beginning of function (pre assertion) 

§  to check post-conditions: 
§  print values before return statements 
§  insert check before return statements (post assertion) 

§  side-effect: visualize flow of execution 
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ITERATION 
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Multiple Assignment Revisited 

§  as seen before, variables can be assigned multiple times 
§  assignment is NOT the same as equality 
§  it is not symmetric, and changes with time 

§  Example: 
 a = 42 
 … 
 b = a 
 … 
 a = 23 

June 2009 60 

from here, 
a and b are equal 

from here, 
a and b are different 



Updating Variables 

§  most common form of multiple assignment is updating 
§  a variable is assigned to an expression containing that variable 

§  Example: 
 x = 23 
 for i in range(19): 
     x = x + 1 

 

§  adding one is called incrementing 

§  expression evaluated BEFORE assignment takes place 
§  thus, variable needs to have been initialized earlier! 
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Iterating with While Loops 

§  iteration  =   repetition of code blocks 
§  can be implemented using recursion (countdown, polyline) 

§  while statement: 
 <while-loop>  =>  while <cond>: 
        <instr1>;  <instr2>;  <instr3> 

 

§  Example:   def countdown(n): 
       while n > 0: 
           print n, "seconds left!" 
           n = n - 1 
       print "Ka-Boom!" 
   countdown(3) 
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Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  difficult for other loops: 

 def collatz(n): 
     while n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             n = n / 2 
         else:    # n is odd 
             n = 3 * n + 1 
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Termination 

§  Termination  =  the condition is eventually False 
§  loop in countdown obviously terminates: 

 while n > 0:      n = n - 1 
§  can also be difficult for recursion: 

 def collatz(n): 
     if n != 1: 
         print n, 
         if n % 2 == 0:   # n is even 
             collatz(n / 2) 
         else:    # n is odd 
             collatz(3 * n + 1) 
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Breaking a Loop 

§  sometimes you want to force termination 

§  Example: 
 while True: 
     num = raw_input('enter a number (or "exit"):\n') 
     if num == "exit": 
         break 
     n = int(num) 
     print "Square of", n, "is:", n**2 
 print "Thanks a lot!" 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 
§  for square root of a:  f(x) = x2 – a  f ’(x) = 2x 
§  simplifying for this special case:  xn+1 = (xn + a / xn) / 2 

§  Example 1:  while True: 
       print xn 
       xnp1 = (xn + a / xn) / 2 
       if xnp1 == xn: 
           break 
       xn = xnp1 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if xnp1 == xn: 
           break 
       xn = xnp1 
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Approximating Square Roots 

§  Newton’s method for finding root of a function f: 
1.  start with some value x0 

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn) 

§  Example 2:  def f(x):  return x**3 - math.cos(x) 
   def f1(x):  return 3*x**2 + math.sin(x) 
   while True: 
       print xn 
       xnp1 = xn - f(xn) / f1(xn) 
       if math.abs(xnp1 - xn) < epsilon: 
           break 
       xn = xnp1 
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Algorithms 

§  algorithm  =    mechanical problem-solving process 
§  usually given as a step-by-step procedure for computation 

§  Newton’s method is an example of an algorithm 
§  other examples: 

§  addition with carrying 
§  subtraction with borrowing 
§  long multiplication 
§  long division 

§  directly using Pythagora’s formula is not an algorithm 
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Divide et Impera 

§  latin, means “divide and conquer” (courtesy of Julius Caesar) 
§  Idea:   break down a problem and recursively work on parts 

§  Example:  guessing a number by bisection 
 def guess(low, high): 
     if low == high: 
         print "Got you! You thought of: ", low 
     else: 
         mid = (low+high) / 2 
         ans = raw_input("Is "+str(mid)+" correct (>, =, <)?") 
         if ans == ">":  guess(mid,high) 
         elif ans == "<":  guess(low,mid) 
         else:   print "Yeehah! Got you!" 
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Debugging Larger Programs 

§  assume you have large function computing wrong return value 
§  going step-by-step very time consuming 

§  Idea:   use bisection, i.e., half the search space in each step 

1.  insert intermediate output (e.g. using print) at mid-point 
2.  if intermediate output is correct, apply recursively to 2nd part 
3.  if intermediate output is wrong, apply recursively to 1st part 
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