
DM536 / DM550 Part 1
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

RECURSION

June 2009 2

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 1:
 def countdown(n):
 if n <= 0:
 print "Ka-Boooom!"
 else:
 print n, "seconds left!"
 countdown(n-1)
 countdown(3)

June 2009 3

Stack Diagrams for Recursion

 __main__

 countdown

 countdown

 countdown

 countdown

June 2009 4

n è 3

n è 2

n è 1

n è 0

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 2:
 def polyline(t, n, length, angle):
 for i in range(n):
 fd(t, length)
 lt(t, angle)

June 2009 5

Recursion

§  a function can call other functions
§  a function can call itself
§  such a function is called a recursive function

§  Example 2:
 def polyline(t, n, length, angle):
 if n > 0:
 fd(t, length)
 lt(t, angle)
 polyline(t, n-1, length, angle)

June 2009 6

Infinite Recursion

§  base case = no recursive function call reached
§  we say the function call terminates

§  Example 1: n == 0 in countdown / polyline

§  infinite recursion = no base case is reached
§  also called non-termination

§  Example:
 def infinitely_often():
 infinitely_often()

§  Python has recursion limit 1000 – ask sys.getrecursionlimit()

June 2009 7

Keyboard Input

§  so far we only know input()
§  what happens when we enter Hello?
§  input() treats all input as Python expression <expr>

§  for string input, use raw_input()
§  what happens when we enter 42?
§  raw_input() treats all input as string

§  both functions can take one argument prompt
§  Example 1: a = input("first side: ")
§  Example 2: name = raw_input("Your name:\n")
§  “\n” denotes a new line: print "Hello\nWorld\n!"

June 2009 8

Debugging using Tracebacks

§  error messages in Python give important information:
§  where did the error occur?
§  what kind of error occurred?

§  unfortunately often hard to localize real problem
§  Example:

 def determine_vat(base_price, vat_price):
 factor = base_price / vat_price
 reverse_factor = 1 / factor
 return reverse_factor - 1
 print determine_vat(400, 500)

June 2009 9

error
reported

real
problem

Debugging using Tracebacks

§  error messages in Python give important information:
§  where did the error occur?
§  what kind of error occurred?

§  unfortunately often hard to localize real problem
§  Example:

 def determine_vat(base_price, vat_price):
 factor = float(base_price) / vat_price
 reverse_factor = 1 / factor
 return reverse_factor - 1
 print determine_vat(400, 500)

June 2009 10

FRUITFUL FUNCTIONS

June 2009 11

Return Values

§  so far we have seen only functions with one or no return
§  sometimes more than one return makes sense

§  Example 1:
 def sign(x):
 if x < 0:
 return -1
 elif x == 0:
 return 0
 else:
 return 1

June 2009 12

Return Values

§  so far we have seen only functions with one or no return
§  sometimes more than one return makes sense

§  Example 1:
 def sign(x):
 if x < 0:
 return -1
 elif x == 0:
 return 0
 return 1

§  important that all paths reach one return

June 2009 13

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2

June 2009 14

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx

June 2009 15

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx
 dy = y2 - y1 # vertical distance
 print "dy:", dy

June 2009 16

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 print "dx:", dx
 dy = y2 - y1 # vertical distance
 print "dy:", dy
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys

June 2009 17

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys

June 2009 18

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 print "dxs dys:", dxs, dys
 ds = dxs + dys # square of distance
 print "ds:", ds

June 2009 19

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 print "ds:", ds

June 2009 20

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 print "ds:", ds
 d = math.sqrt(ds) # distance
 print d

June 2009 21

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 print d

June 2009 22

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 print "x1 y1 x2 y2:", x1, y1, x2, y2
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 print d
 return d

June 2009 23

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 dxs = dx**2; dys = dy**2
 ds = dxs + dys # square of distance
 d = math.sqrt(ds) # distance
 return d

June 2009 24

Incremental Development

§  Idea: test code while writing it
§  Example: computing the distance between (x1,y1) and (x2,y2)

 def distance(x1, y1, x2, y2):
 dx = x2 - x1 # horizontal distance
 dy = y2 - y1 # vertical distance
 return math.sqrt(dx**2 + dy**2)

June 2009 25

Incremental Development

§  Idea: test code while writing it

1.  start with minimal function
2.  add functionality piece by piece
3.  use variables for intermediate values
4.  print those variables to follow your progress
5.  remove unnecessary output when function is finished

June 2009 26

Composition

§  function calls can be arguments to functions
§  direct consequence of arguments being expressions

§  Example: area of a circle from center and peripheral point

 def area(radius):
 return math.pi * radius**2

 def area_from_points(xc, yc, xp, yp):
 return area(distance(xc, yc, xp, yp))

June 2009 27

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 if y / x * x == y: # remainder of integer division is 0
 return True
 return False

June 2009 28

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 if y % x == 0: # remainder of integer division is 0
 return True
 return False

June 2009 29

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

June 2009 30

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

June 2009 31

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

 def odd(x):
 return not divides(2, x)

June 2009 32

Boolean Functions

§  boolean functions = functions that return True or False
§  useful e.g. as <cond> in a conditional execution
§  Example:

 def divides(x, y):
 return y % x == 0

 def even(x):
 return divides(2, x)

 def odd(x):
 return not even(x)

June 2009 33

RECURSION:
SEE RECURSION

June 2009 34

Recursion is “Complete”

§  so far we know:
§  values of type integer, float, string
§  arithmetic expressions
§  (recursive) function definitions
§  (recursive) function calls
§  conditional execution
§  input/output

§  ALL possible programs can be written using these elements!
§  we say that we have a “Turing complete” language

June 2009 35

Factorial

§  in mathematics, the factorial function is defined by
§  0! = 1
§  n! = n * (n-1)!

§  such recursive definitions can trivially be expressed in Python
§  Example:

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 36

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 37

 n è 3

 n è 2

 n è 1

 n è 0

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 38

 n è 3

 n è 2

 n è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 39

 n è 3

 n è 2

 n è 1 recurse è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 40

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 41

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 42

 n è 3

 n è 2 recurse è 1

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 43

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 44

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 45

 n è 3 recurse è 2

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 46

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 47

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 48

 x è 6

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Leap of Faith

§  following the flow of execution difficult with recursion
§  alternatively take the “leap of faith” (induction)

§  Example:
 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 49

check the
base case

check the
step case

assume recursive
call is correct

Control Flow Diagram

§  Example: def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

June 2009 50

n == 0

recurse = factorial(n-1) True	

False	

result = n * recurse

return 1 return result

factorial(n)

Fibonacci

§  Fibonacci numbers model for unchecked rabbit population
§  rabbit pairs at generation n is sum of rabbit pairs at

generation n-1 and generation n-2

§  mathematically:
§  fib(0) = 0, fib(1) = 1, fib(n) = fib(n-1) + fib(n-2)

§  Pythonically:
 def fib(n):
 if n == 0: return 0
 elif n == 1: return 1
 else: return fib(n-1) + fib(n-2)

§  “leap of faith” required even for small n!

June 2009 51

Control Flow Diagram

§  Example: def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

June 2009 52

n == 0

True	

False	

return 0 return fib(n-1) + fib(n-2)

fib(n)

n == 1

return 1

True	

False	

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Problem: factorial(1.5) exceeds recursion limit

§  factorial(0.5)
§  factorial(-0.5)
§  factorial(-1.5)
§  …

June 2009 53

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 54

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 55

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n < 0:
 print "Non-negative number expected"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 56

Debugging Interfaces

§  interfaces simplify testing and debugging

1.  test if pre-conditions are given:
§  do the arguments have the right type?
§  are the values of the arguments ok?

2.  test if the post-conditions are given:
§  does the return value have the right type?
§  is the return value computed correctly?

3.  debug function, if pre- or post-conditions violated

June 2009 57

Debugging (Recursive) Functions

§  to check pre-conditions:
§  print values & types of parameters at beginning of function
§  insert check at beginning of function (pre assertion)

§  to check post-conditions:
§  print values before return statements
§  insert check before return statements (post assertion)

§  side-effect: visualize flow of execution

June 2009 58

ITERATION

June 2009 59

Multiple Assignment Revisited

§  as seen before, variables can be assigned multiple times
§  assignment is NOT the same as equality
§  it is not symmetric, and changes with time

§  Example:
 a = 42
 …
 b = a
 …
 a = 23

June 2009 60

from here,
a and b are equal

from here,
a and b are different

Updating Variables

§  most common form of multiple assignment is updating
§  a variable is assigned to an expression containing that variable

§  Example:
 x = 23
 for i in range(19):
 x = x + 1

§  adding one is called incrementing

§  expression evaluated BEFORE assignment takes place
§  thus, variable needs to have been initialized earlier!

June 2009 61

Iterating with While Loops

§  iteration = repetition of code blocks
§  can be implemented using recursion (countdown, polyline)

§  while statement:
 <while-loop> => while <cond>:
 <instr1>; <instr2>; <instr3>

§  Example: def countdown(n):
 while n > 0:
 print n, "seconds left!"
 n = n - 1
 print "Ka-Boom!"
 countdown(3)

 June 2009 62

n == 3 n == 3
True

n == 3 n == 3 n == 2 n == 2
True

n == 2 n == 2 n == 1 n == 1
True

n == 1 n == 1 n == 0 n == 0
False

n == 0

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  difficult for other loops:

 def collatz(n):
 while n != 1:
 print n,
 if n % 2 == 0: # n is even
 n = n / 2
 else: # n is odd
 n = 3 * n + 1

June 2009 63

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  can also be difficult for recursion:

 def collatz(n):
 if n != 1:
 print n,
 if n % 2 == 0: # n is even
 collatz(n / 2)
 else: # n is odd
 collatz(3 * n + 1)

June 2009 64

Breaking a Loop

§  sometimes you want to force termination

§  Example:
 while True:
 num = raw_input('enter a number (or "exit"):\n')
 if num == "exit":
 break
 n = int(num)
 print "Square of", n, "is:", n**2
 print "Thanks a lot!"

June 2009 65

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)
§  for square root of a: f(x) = x2 – a f ’(x) = 2x
§  simplifying for this special case: xn+1 = (xn + a / xn) / 2

§  Example 1: while True:
 print xn
 xnp1 = (xn + a / xn) / 2
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 66

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 67

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if math.abs(xnp1 - xn) < epsilon:
 break
 xn = xnp1

June 2009 68

Algorithms

§  algorithm = mechanical problem-solving process
§  usually given as a step-by-step procedure for computation

§  Newton’s method is an example of an algorithm
§  other examples:

§  addition with carrying
§  subtraction with borrowing
§  long multiplication
§  long division

§  directly using Pythagora’s formula is not an algorithm

June 2009 69

Divide et Impera

§  latin, means “divide and conquer” (courtesy of Julius Caesar)
§  Idea: break down a problem and recursively work on parts

§  Example: guessing a number by bisection
 def guess(low, high):
 if low == high:
 print "Got you! You thought of: ", low
 else:
 mid = (low+high) / 2
 ans = raw_input("Is "+str(mid)+" correct (>, =, <)?")
 if ans == ">": guess(mid,high)
 elif ans == "<": guess(low,mid)
 else: print "Yeehah! Got you!"

June 2009 70

Debugging Larger Programs

§  assume you have large function computing wrong return value
§  going step-by-step very time consuming

§  Idea: use bisection, i.e., half the search space in each step

1.  insert intermediate output (e.g. using print) at mid-point
2.  if intermediate output is correct, apply recursively to 2nd part
3.  if intermediate output is wrong, apply recursively to 1st part

June 2009 71

