
DM536 / DM550 Part 1
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

PROJECT PART 1

June 2009 2

Organizational Details

§  2 possible projects

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  Written 6 page report as specified in project description
§  handed in electronically as a PDF + source code files
§  pre-delivery deadline: October 02, 23:59
§  FINAL deadline: October 23, 23:59

§  ENOUGH - now for the FUN part …

June 2009 3

Fractals and the Beauty of Nature

§  geometric objects similar to themselves at different scales

§  many structures in nature are fractals:

§  snowflakes
§  lightning
§  ferns

§  Goal: generate fractals using Swampy

§  Challenges: Recursion, Tuning, Library Use

June 2009 4

Fractals and the Beauty of Nature
§  Task 0: Preparation

§  understand implementation
of Koch snowflake

§  Task 1: Sierpinski Triangle
§  draw fractal triangle of

fixed depth

§  Task 2: Binary Tree
§  draw binary trees of fixed

depth

§  Task 3 (optional): Fern Time
§  draw beautiful fern leaves

with fixed detail
June 2009 5

From DNA to Proteins

§  proteins encoded by DNA base sequence using A, C, G, and T

§  Background:
§  proteins are sequences of amino acids
§  amino acids encoded using three bases
§  chromosomes given as base sequences

§  Goal: assemble and analyze sequences from files

§  Challenges: File Handling, String and List Methods, Iteration

June 2009 6

From DNA to Proteins

§  Task 0: Preparation
§  download human DNA sequence and take a look at it

§  Task 1: Assembling the Sequence
§  clean up the sequence and assemble it into one string

§  Task 2: Finding Starting Points
§  find positions in string where ATG closely follows TATAAA

§  Task 3: Finding End Points
§  find one of the potential end markers (TAG, TAA, TGA)

§  Task 4 (optional): Potential Proteins without TATA Boxes
§  analysis of overlaps in encoded proteins

June 2009 7

STRINGS

June 2009 8

Strings as Sequences

§  strings can be viewed as 0-indexed sequences

§  Examples:
 "Slartibartfast"[0] == "S"
 "Slartibartfast"[1] == "l"
 "Slartibartfast"[2] == "Slartibartfast"[7]
 "Phartiphukborlz"[-1] == "z"

§  grammar rule for expressions:
 <expr> => … | <expr1>[<expr2>]

§  <expr1> = expression with value of type string
§  index <expr2> = expression with value of type integer
§  negative index counting from the back

June 2009 9

Length of Strings

§  length of a string computed by built-in function len(object)

§  Example:
 name = "Slartibartfast"
 length = len(name)
 print name[length-4]

§  Note: name[length] gives runtime error

§  identical to write name[len(name)-1] and name[-1]
§  more general, name[len(name)-a] identical to name[-a]

June 2009 10

Traversing with While Loop

§  many operations go through string one character at a time
§  this can be accomplished using

§  a while loop,
§  an integer variable, and
§  index access to the string

§  Example:
 index = 0
 while index < len(name):
 letter = name[index]
 print letter
 index = index + 1

June 2009 11

Traversing with For Loop

§  many operations go through string one character at a time
§  this can be accomplished easier using

§  a for loop and
§  a string variable

§  Example:
 for letter in name:
 print letter

June 2009 12

Generating Duck Names

§  What does the following code do?

 prefix = "R"
 infixes = "iau"
 suffix = "p"
 for infix in infixes:
 print prefix + infix + suffix

§  … and greetings from Andebyen!

June 2009 13

String Slices

§  slice = part of a string
§  Example 1:

 name = "Phartiphukborlz"
 print name[6:10]

§  one can use negative indices:
 name[6:-5] == name[6:len(name)-5]

§  view string with indices before letters:

June 2009 14

P h a r t i p h u k b o r l z
0	

 1	

 2	

 3	

 4	

 1

5	

1
3	

9	

5	

 6	

 7	

 8	

 1
0	

1
1	

1
2	

1
4	

String Slices

§  slice = part of a string
§  Example 2:

 name = "Phartiphukborlz"
 print name[6:6] # empty string has length 0
 print name[:6] # no left index = 0
 print name[6:] # no right index = len(name)
 print name[:] # guess ;)

§  view string with indices before letters:

June 2009 15

P h a r t i p h u k b o r l z
0	

 1	

 2	

 3	

 4	

 1

5	

1
3	

9	

5	

 6	

 7	

 8	

 1
0	

1
1	

1
2	

1
4	

Changing Strings

§  indices and slices are read-only (immutable)
§  you cannot assign to an index or a slice:

 name = "Slartibartfast"
 name[0] = "s"

§  change strings by building new ones
§  Example 1:

 name = "Slartibartfast"
 name = "s" + name[1:]

§  Example 2:
 name = "Anders And"
 name2 = name[:6] + "ine" + name[6:]

June 2009 16

Searching in Strings

§  indexing goes from index to letter
§  reverse operation is called find (search)
§  Implementation:

 def find(word, letter):
 index = 0
 while index < len(word):
 if word[index] == letter:
 return index
 index = index + 1
 return -1

§  Why not use a for loop?

June 2009 17

Looping and Counting

§  want to count number of a certain letter in a word
§  for this, we use a counter variable

§  Implementation:
 def count(word, letter):
 count = 0
 for x in word:
 if x == letter:
 count = count + 1
 return count

§  Can we use a while loop here?

June 2009 18

String Methods

§  methods = functions associated to a data structure
§  calling a method is called method invocation
§  dir(object): get list of all methods of a data structure
§  Example:

 name = "Slartibartfast"
 print name.lower()
 print name.upper()
 print name.find("a")
 print name.count("a")
 for method in dir(name):
 print method
 help(name.upper)

 June 2009 19

Using the Inclusion Operator

§  how to find out if string contained in another string?

§  Idea: use a while loop and slices
 def contained_in(word1, word2):
 index = 0
 while index+len(word1) <= len(word2):
 if word2[index:index+len(word1)] == word1:
 return True
 index = index+1
 return False

§  Python has pre-defined operator in:
 print "phuk" in "Phartiphukborlz"

June 2009 20

Comparing Strings

§  string comparison is from left-to-right (lexicographic)

§  Example 1:
 "slartibartfast" > "phartiphukborlz"

§  Example 2:
 "Slartibartfast" < "phartiphukborlz"

§  Note: string comparison is case-sensitive
§  to avoid problems with case, use lower() or upper()

§  Example 3:
 "Slartibartfast".upper() > "phartiphukborlz".upper()

June 2009 21

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2)
 while j > 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 22

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2) - 1
 while j > 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 23

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2) - 1
 while j >= 0:
 if word1[i] != word2[j]: return False
 i = i + 1; j = j - 1
 return True

June 2009 24

Debugging String Algorithms

§  beginning and end critical, when iterating through sequences
§  number of iterations often off by one (obi-wan error)
§  Example:

 def is_reverse(word1, word2):
 if len(word1) != len(word2): return False
 i = 0
 j = len(word2)
 while j > 0:
 if word1[i] != word2[j-1]: return False
 i = i + 1; j = j - 1
 return True

June 2009 25

HANDLING TEXT FILES

June 2009 26

Reading Files

§  open files for reading using the open(name) built-in function
§  Example: f = open("anna_karenina.txt")

§  return value is file object in reading mode (mode 'r')

§  we can read all content into string using the read() method
§  Example: content = f.read()

 print content[:60]
 print content[3000:3137]

§  contains line endings (here “\r\n”)

June 2009 27

Reading Lines from a File

§  instead of reading all content, we can use method readline()
§  Example: print f.readline()

 next = f.readline().strip()
 print next

§  the method strip() removes all leading and trailing whitespace
§  whitespace = \n, \r, or \t (new line, carriage return, tab)

§  we can also iterate through all lines using a for loop
§  Example: for line in f:

 line = line.strip()
 print line

June 2009 28

Reading Words from a File

§  often a line consists of many words
§  no direct support to read words

§  string method split() can be used with for loop
§  Example:

 def print_all_words(f):
 for line in f:
 for word in line.split():
 print word

§  variant split(sep) using sep instead of whitespace
§  Example: for part in "Slartibartfast".split("a"):

 print part

June 2009 29

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].upper() == word[0]

June 2009 30

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].upper() == word[0] and word[-1] == "a"

June 2009 31

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].isupper() and word[-1] == "a"

§  Example 2: words that contain a double letter
def contains_double_letter(word):
 last = word[0]
 for letter in word[1:]
 if last == letter:
 return True
 last = letter
 return False

June 2009 32

Analyzing Words

§  Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):
 return word[0].isupper() and word[-1] == "a"

§  Example 2: words that contain a double letter
def contains_double_letter(word):
 for i in range(len(word)-1):
 if word[i] == word[i+1]:
 return True
 return False

June 2009 33

Adding Statistics

§  Example: let’s count our special words
def count_words(f):
 count = count_cap_end_a = count_double_letter = 0
 for line in f:
 for word in line.split():
 count = count + 1
 if cap_end_a(word):
 count_cap_end_a = count_cap_end_a + 1
 if contains_double_letter(word):
 count_double_letter = count_double_letter + 1
 print count, count_cap_end_a, count_double_letter
 print count_double_letter * 100 / count, "%"

June 2009 34

Adding Statistics

§  Example: let’s count our special words
def count_words(f):
 count = count_cap_end_a = count_double_letter = 0
 for line in f:
 for word in line.split():
 count += 1
 if cap_end_a(word):
 count_cap_end_a += 1
 if contains_double_letter(word):
 count_double_letter += 1
 print count, count_cap_end_a, count_double_letter
 print count_double_letter * 100 / count, "%"

June 2009 35

Debugging by Testing Functions

§  correct selection of tests important
§  check obviously different cases for correct return value
§  check corner cases (here: first letter, last letter etc.)
§  Example:
def contains_double_letter(word):
 for i in range(len(word)-1):
 if word[i] == word[i+1]:
 return True
 return False
§  test "mallorca" and "ibiza"
§  test "llamada" and "bell"

June 2009 36

