python

powered

DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Project Qualification Assessment

= first assessment on Monday, September 18, 12:15-14:00

= 3 assessments in total

= sum of points from all 3 assessments at least 50% of total

" in class assessment using your own computer

= please test BEFORE next Monday!

= Blackboard multiple choice

= Magic numbers generated using online python version at:
http://lynx.imada.sdu.dk/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Code Café

* manned Code Cafe for students
= first time VWednesday, September 6
" last time Wednesday, December 20

= closed in Week 42 (efterarsferie)

= Mondays, 15.00 — 17.00, Nicky Cordua Mattsson
* Wednesdays, 15.00 — 17.00, Troels Risum Vigsge Frimer

* Nicky and Troels can help with any coding related issues

= issues have to be related to some IMADA course (fx this one)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

RECURSION:
SEE RECURSION

Recursion is “Complete”

= so far we know:
= values of type integer, float, string
= arithmetic expressions
= (recursive) function definitions
= (recursive) function calls
= conditional execution

" input/output

= ALL possible programs can be written using these elements!
= we say that we have a “Turing complete” language

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Factorial

* in mathematics, the factorial function is defined by
= 0=
= n!=n*(n-1)!
= such recursive definitions can trivially be expressed in Python
= Example:
def factorial(n):
if n ==
return |
recurse = factorial(n-1)
result = n * recurse
return result

x = factorial(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___

factorial n>3
factorial n->2
factorial n-> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n>1 recurse> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

recurse > |

result > |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___

factorial

factorial

factorial

factorial

n->3

n-> 2

n-> |

recurse > |

result > |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___

factorial

factorial

factorial

factorial

n->3
n=>2 recurse > |
n>1| recurse> 1| result> |

n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial

factorial

factorial

factorial

n>3
n>2 recurse> | result> 2
n>1 recurse> | result> |
n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3

factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3 recurse> 2

factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__

factorial n>3 recurse>2 result>6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> | result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

___main___
6
factorial n>3 recurse=>2 vresult> 6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagram for Factorial

__main__ x> 6
6
factorial n>3 recurse=>2 vresult> 6
factorial n>2 recurse> | result> 2
factorial n>1 recurse> 1 result> |
factorial n>0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Leap of Faith

= following the flow of execution difficult with recursion

= alternatively take the “leap of faith” (induction)

= Example:

def factorial(n): check the

if 0 == base case

return |)
assume recursive

call is correct

1/

recurse = factSiransr
result = n * recurse

return result check the
x = factorial(3) step case

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: def factorial(n):

. if n ==0:
- ->< factorial(n)
o7 return |
’

recurse = factorial(n-

/
1)
\ *
\ result = n * recurse
\ False
\ return result

~ o
= recurse = factorial(n-1)

\

result = n * recurse

v

Getu rn resuID return | >

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

True

Fibonacci

= Fibonacci numbers model for unchecked rabbit population

= rabbit pairs at generation n is sum of rabbit pairs at
generation n-1 and generation n-2

= mathematically:
= fib(0) =0, fib(l) = 1, fib(n) = fib(n-1) + fib(n-2)

= Pythonically:

def fib(n):
ifn==0: returnO
elif n == 1: return |
else: return fib(n-1) + fib(n-2)

" “leap of faith” required even for small n!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: def fib(n):
ifn==20:
o7 < fib(n) >< . return 0
I' \\ elif n ==
! \‘ return |
| else:

return fib(n-1) + fib(n-2)

\
‘<return fib(n-1) + fib(n-2) return I> return 0>

Types and Base Cases

def factorial(n):
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

Problem: factorial(l.5) exceeds recursion limit
factorial(0.5)
factorial(-0.5)
factorial(-1.5)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

= lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if not isinstance(n, int):
print("Integer required"); return None
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

= lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Types and Base Cases

def factorial(n):
if not isinstance(n, int):
print("Integer required"); return None
if n <O:
print("Non-negative number expected"); return None
if n ==
return |
recurse = factorial(n-1)
result = n * recurse

return result

= lIdea: check type at beginning of function

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Interfaces

* interfaces simplify testing and debugging

|. test if pre-conditions are given:
* do the arguments have the right type!

= are the values of the arguments ok!?

|. test if the post-conditions are given:
* does the return value have the right type?

" is the return value computed correctly?

|. debug function, if pre- or post-conditions violated

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging (Recursive) Functions

= to check pre-conditions:
= print values & types of parameters at beginning of function

* insert check at beginning of function (pre assertion)
= to check post-conditions:
= print values before return statements

" insert check before return statements (post assertion)

» side-effect: visualize flow of execution

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

ITERATION

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multiple Assighment Revisited

= as seen before, variables can be assigned multiple times
= assignment is NOT the same as equality

" it is not symmetric, and changes with time

" Example: from here,
a =42 a and b are equal
b=a
from here,
a and b are different
a=23

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Updating Variables

* most common form of multiple assignment is updating

= avariable is assigned to an expression containing that variable

= Example:
X =123
for iin range(19):

x=x+ |
= adding one is called incrementing

= expression evaluated BEFORE assignment takes place

= thus, variable needs to have been initialized earlier!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Iterating with While Loops

" jteration = repetition of code blocks

= can be implemented using recursion (countdown, polyline)

= while statement:
<while-loop> => while <cond>:
<instr,>; <instr,>; <instr;>

= Example: def countdown(n):
PE— /while n>0: == False
n == print(n, "seconds left!")
Z/— n=n-|

print("Ka-Boom!")

countdown(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Termination

= Termination = the condition is eventually False
* |loop in countdown obviously terminates:
while n > 0: n=n-|
= difficult for other loops:
def collatz(n):
while n 1= I:

print(n,end="")

ifn%2==0: # nis even
n=nl/l2

else: # nis odd
n=3%n+|

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Termination

= Termination = the condition is eventually False
* |loop in countdown obviously terminates:

while n > 0: n=n-|
= can also be difficult for recursion:

def collatz(n):

ifn!=1:
print(n,end="")
ifn%2==0: # n is even
collatz(n // 2)
else: # n is odd

collatz(3 *n + 1)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Breaking a Loop

" sometimes you want to force termination

= Example:
while True:
num = input('enter a number (or "exit"):\n")
if num == "exit":
break

n = int(num)

print("Square of", n, "is:", n**2)
print("Thanks a lot!")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|. start with some value x,
2. refine this value using x,, = x, — f(x,) / f'(x,)
= for square root of a: f(x) =x2—a f'(x)=2x

= simplifying for this special case: x_ ., =(x,+a/x,) /2

= Example I: while True:
print(xn)
xnpl = (xn +a/xn)/2
if xnpl == xn:
break
xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|. start with some value x,

2. refine this value using x,, = x, — f(x,) / f'(x,)

= Example 2: def f(x): return x**3 - math.cos(x)
def fl(x): return 3*x**2 + math.sin(x)
while True:
print xn

xnpl = xn - f(xn) / fl(xn)
if xnpl == xn:
break

xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Approximating Square Roots

* Newton’s method for finding root of a function f:
|. start with some value x,

2. refine this value using x,, = x, — f(x,) / f'(x,)

= Example 2: def f(x): return x**3 - math.cos(x)
def fl(x): return 3*x**2 + math.sin(x)
while True:
print xn

xnpl = xn - f(xn) / fl(xn)
if abs(xnp| - xn) < epsilon:
break

xn = xnp |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Algorithms

= algorithm = mechanical problem-solving process

= usually given as a step-by-step procedure for computation

* Newton’s method is an example of an algorithm
= other examples:

= addition with carrying

= subtraction with borrowing

= long multiplication

* long division
= directly using Pythagora’s formula is not an algorithm

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Divide et Impera

* latin, means “divide and conquer” (courtesy of Julius Caesar)
= ldea: break down a problem and recursively work on parts
= Example: guessing a number by bisection
def guess(low, high):
if low == high:
print("Got you! You thought of: ", low)
else:
mid = (low+high) // 2
ans = input("ls "+str(mid)+" correct (>, =, <)\n")
if ans == ">": guess(mid+1,high)
elif ans == "<": guess(low,mid-1)

else: print("Yeehah! Got you!")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Larger Programs

= assume you have large function computing wrong return value

= going step-by-step very time consuming

= Idea: use bisection,i.e., half the search space in each step

insert intermediate output (e.g. using print) at mid-point
2. if intermediate output is correct, apply recursively to 2" part

3. if intermediate output is wrong, apply recursively to |5 part

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

