
More in this series
The first installment of "Metaclass
programming in Python" introduces
metaclass programming concepts as
compared to object-oriented
concepts.

"Metaclass programming in Python,
Part 3" recommends avoiding overly
clever custom metaclasses.

Read more articles by David and
Michele.

Metaclass programming in Python, Part 2
Understanding the arcana of inheritance and instance creation

Level: Introductory

Michele Simionato (mis6+@pitt.edu), Physicist, University of Pittsburgh
David Mertz (mertz@gnosis.cx), Developer, Gnosis Software, Inc.

28 Aug 2003

Michele and David's initial developerWorks article on metaclass programming prompted quite a bit of
feedback, some of it from perplexed readers trying to grasp the subtleties of Python metaclasses. This
article revisits the working of metaclasses and their relation to other OOP concepts. It contrasts class
instantiation with inheritance, distinguishes classmethods and metamethods, and explains and solves
metaclass conflicts.

Metaclasses and their discontents
In our initial article on metaclass programming in Python, we introduced the concept of metaclasses, showed some of
their power, and demonstrated their use in solving problems such as dynamic customization of classes and libraries at
run-time.

That article proved quite popular, but there were elisions in our
condensed summary. Certain details in the use of metaclasses merit
further explanation. Based on the feedback of our readers and on
discussions in comp.lang.python, we will address some of those trickier
point in this second article. In particular, we think the following points
are important for any programmer wanting to master metaclasses:

Users must understand the differences and interactions between
metaclass programming and traditional object-oriented
programming (under both single and multiple inheritance).
Python 2.2 added the built-in functions staticmethod()
and classmethod() to create methods that do not require an
instance object during invocation. To an extent, classmethods
overlap in purpose with (meta)methods defined in metaclasses.
But the precise similarities and differences have also generated
confusion in the minds of many programmers.
Users should understand the cause and the resolution of metatype conflicts. This becomes essential when you
want to use more than one custom metaclass. We explain the concept of composition of metaclasses.

Instantiation versus inheritance
Many programmers are confused about the difference between a metaclass and a base class. At the superficial level of
"determining" a class, both look similar. But once you look deeper, the concepts drift apart.

Before presenting some examples, it is worth being precise about some nomenclature. An instance is a Python object
that was "manufactured" by a class; the class acts as a sort of template for the instance. Every instance is an instance of
exactly one class (but a class might have multiple instances). What we often call an instance object -- or perhaps a
"simple instance" -- is "final" in the sense that it cannot act as a template for other objects (but it might still be a factory
or a delegate, which serve overlapping purposes).

Some instance objects are themselves classes; and all classes are instances of a corresponding metaclass. Even classes
only come into existence through the instantiation mechanism. Usually classes are instances of the built-in, standard
metaclass type; it is only when we specify metaclasses other than type that we need to think about metaclass
programming. We also call the class used to instantiate an object the type of that object.

Running orthogonal to the idea of instantiation is the notion of inheritance. Here, a class can have one or multiple
parents, not just one unique type. And parents can have parents, creating a transitive subclass relation, conveniently

http://www.ibm.com/developerworks/linux/library/l-pymeta.html
http://www.ibm.com/developerworks/linux/library/l-pymeta3.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=charming+python%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
https://www.ibm.com/developerworks/linux/library/l-pymeta2/?S_TACT=105AGX03&S_CMP=ART#author
mailto:mis6+@pitt.edu?subject=Metaclass%20programming%20in%20Python,%20Part%202
https://www.ibm.com/developerworks/linux/library/l-pymeta2/?S_TACT=105AGX03&S_CMP=ART#author
mailto:mertz@gnosis.cx?subject=Metaclass%20programming%20in%20Python,%20Part%202
http://www.ibm.com/developerworks/linux/library/l-pymeta.html

parents, not just one unique type. And parents can have parents, creating a transitive subclass relation, conveniently
accessible with the built-in function issubclass(). For example, if we define a few classes and an instance:

Listing 1. Typical inheritance hierarchy

>>> class A(object): a1 = "A"
...
>>> class B(object): a2 = "B"
...
>>> class C(A,B): a3 = "C(A,B)"
...
>>> class D(C): a4 = "D(C)"
...
>>> d = D()
>>> d.a5 = "instance d of D"

Then we can test the relations:

Listing 2. Testing ancestry

>>> issubclass(D,C)
True
>>> issubclass(D,A)
True
>>> issubclass(A,B)
False
>>> issubclass(d,D)
[...]
TypeError: issubclass() arg 1 must be a class

The interesting question now -- the one necessary for understanding the contrast between superclasses and metaclasses --
is how an attribute like d.attr is resolved. For simplicity, we discuss only the standard look-rule, not the fallback to
.__getattr__(). The first step in such resolution is to look in d.__dict__ for the name attr. If found,
that's that; but if not, something fancy needs to happen, such as:

>>> d.__dict__, d.a5, d.a1
({'a5': 'instance d'}, 'instance d', 'A')

The trick to finding an attribute that isn't attached to an instance is to look for it in the class of the instance, then after
that in all the superclasses. The order in which superclasses are checked is called the method resolution order for the
class. You can look at it with the (meta)method .mro() (but only from class objects):

>>> [k.__name__ for k in d.__class__.mro()]
['D', 'C', 'A', 'B', 'object']

In other words, the access to d.attr first looks in d.__dict__, then in D.__dict__, C.__dict__,
A.__dict__, B.__dict__, and finally in object.__dict__. If the name is not found in any of those
places, an AttributeError is raised.

Notice that metaclasses were never mentioned in the lookup procedure.

Metaclasses versus ancestors
Here is a simple example of normal inheritance. We define a Noble base class, with subclasses such as Prince,
Duke, Baron, etc.

Listing 3. Attribute inheritance

>>> for s in "Power Wealth Beauty".split(): exec '%s="%s"'%(s,s)
...
>>> class Noble(object): # ...in fairy tale world
... attributes = Power, Wealth, Beauty
...
>>> class Prince(Noble):
... pass
...

>>> Prince.attributes
('Power', 'Wealth', 'Beauty')

The class Prince inherits the attributes of the class Noble. An instance of Prince still follows the lookup chain
discussed above:

Listing 4. Attributes in instances

>>> charles=Prince()
>>> charles.attributes # ...remember, not the real world
('Power', 'Wealth', 'Beauty')

If the Duke class should happen to have a custom metaclasses, it can obtain some attributes that way:

>>> class Nobility(type): attributes = Power, Wealth, Beauty
...
>>> class Duke(object): __metaclass__ = Nobility
...

As well as being a class, Duke is an instance of the metaclass Nobility--attribute lookup proceeds as with any
object:

>>> Duke.attributes
('Power', 'Wealth', 'Beauty')

But Nobility is not a superclass of Duke, so there is no reason why an instance of Duke would find
Nobility.attributes:

Listing 5. Attributes and metaclasses

>>> Duke.mro()
[<class '__main__.Duke'>, <type 'object'>]
>>> earl = Duke()
>>> earl.attributes
[...]
AttributeError: 'Duke' object has no attribute 'attributes'

The availability of metaclass attributes is not transitive; in other words, the attributes of a metaclass are available to its
instances, but not to the instances of the instances. Just this is the main difference between metaclasses and superclasses.
A diagram emphasizes the orthogonality of inheritance and instantiation:

Figure 1. Instantiation versus inheritance

Since earl still has a class, you can indirectly retrieve the attributes, however:

>>> earl.__class__.attributes

Figure 1 contrasts simple cases where either inheritance or metaclasses are involved, but not both. Sometimes, however,
a class C has both a custom metaclass M and a base class B:

Listing 6. Combining metaclasses and superclasses
 >>> class M(type):
... a = 'M.a'
... x = 'M.x'
...
>>> class B(object): a = 'B.a'
...
>>> class C(B): __metaclass__=M
...
>>> c=C()

Graphically:

Figure 2. Combined superclass and metaclass

From the prior explanation, we could imagine that C.a would resolve to either M.a or B.a. As it turns out, lookup on
a class follows its MRO before it looks in its instantiating metaclass:

Listing 7. Resolution with metaclasses and superclasses

>>> C.a, C.x
('B.a', 'M.x')
>>> c.a
'B.a'
>>> c.x
[...]
AttributeError: 'C' object has no attribute 'x'

You can still enforce a attribute value using a metaclass, you just need to set it on the class object being instantiated
rather than as an attribute of the metaclass:

Listing 8. Setting attribute in metaclass

>>> class M(type):
... def __init__(cls, *args):
... cls.a = 'M.a'
...
>>> class C(B): __metaclass__=M
...
>>> C.a, C().a
('M.a', 'M.a')

More on class magic
The fact that the instantiation constraint is weaker than the inheritance constraint is essential for implementing the
special methods like .__new__(), .__init__(), .__str__(), etc. We will discuss the .__str__()
method; an analysis is similar for the other special methods.

Readers probably know that the printed representation of a class object can be modified by overriding its
.__str__() method. In the same sense, the printed representation of a class can be modified by overriding the
.__str__() methods of its metaclass. For instance:

Listing 9. Customizing printout of a class

>>> class Printable(type):
... def __str__(cls):
... return "This is class %s" % cls.__name__
...
>>> class C(object): __metaclass__ = Printable
...
>>> print C # equivalent to print Printable.__str__(C)
This is class C
>>> c = C()
>>> print c # equivalent to print C.__str__(c)

<C object at 0x40380a6c>

The situation can be represented with the following diagram:

Figure 3. Metaclasses and magic methods

From the previous discussion, it is clear that the .__str__() method in Printable cannot override the
.__str__() method in C, which is inherited from object and therefore has precedence; printing c still gives the
standard result.

If C inherited its .__str__() method from Printable rather than from object, it would cause a problem: C
instances do not have a .__name__ attribute and printing c would generate an error. Of course, you could still define
a .__str__() method in C that would change the way c prints.

Classmethods versus metamethods
Another common confusion arises between Python classmethods and methods defined in a metaclass, best called
metamethods.

Consider this example:

Listing 10. Metamethods and classmethods

>>> class M(Printable):
... def mm(cls):
... return "I am a metamethod of %s" % cls.__name__
...
>>> class C(object):
... __metaclass__=M
... def cm(cls):
... return "I am a classmethod of %s" % cls.__name__
... cm=classmethod(cm)
...
>>> c=C()

Part of the confusion is due to the fact that in Smalltalk terminology, C.mm would be called a "class method of C."
Python classmethods are a different beast, however.

The metamethod "mm" can be invoked from either the metaclass or from the class, but not from the instance. The
classmethod can be called both from the class and from its instances (but does not exist in the metaclass).

Listing 11. Invoking a metamethod

>>> print M.mm(C)
I am a metamethod of C
>>> print C.mm()
I am a metamethod of C
>>> print c.mm()
[...]
AttributeError: 'C' object has no attribute 'mm'
>>> print C.cm()
I am a classmethod of C
>>> print c.cm()
I am a classmethod of C

Also, the metamethod is retrieved by dir(M) but not by dir(C) whereas the classmethod is retrieved by dir(C)
and dir(c).

You can only call the metaclass methods that are defined in the class MRO by dispatching on the metaclass (built-ins
like print do this behind the scenes):

Listing 12. Magic metaclass method

>>> print C.__str__()
[...]
TypeError: descriptor '__str__' of 'object' object needs an argument
>>> print M.__str__(C)
This is class C

It is important to notice that this dispatch conflict is not limited to magic methods. If we change C by adding an attribute
C.mm, the same issue exists (it does not matter if the name is a regular method, classmethod, staticmethod, or simple
attribute):

Listing 13. Non-magic metaclass method

>>> C.mm=lambda self: "I am a regular method of %s" % self.__class__
>>> print C.mm()
[...]
TypeError: unbound method <lambda>() must be called with
 C instance as first argument (got nothing instead)

Conflicting metaclasses
Once you work seriously with metaclasses, you will be bitten at least once by metaclass/metatype conflicts. Consider a
class A with metaclass M_A and a class B with metaclass M_B; suppose we derive C from A and B. The question is:
what is the metaclass of C? Is it M_A or M_B?

The correct answer is M_C, where M_C is a metaclass that inherits from M_A and M_B, as in the following graph (in
the Resources later in this article, see the link to Putting metaclasses to work for a discussion):

Figure 4. Avoiding the metaclass conflict

However, Python does not (yet) automatically create M_C. Instead, it raises a TypeError, warning the programmer
of the conflict:

Listing 14. Metaclass conflicts

>>> class M_A(type): pass
...
>>> class M_B(type): pass
...
>>> class A(object): __metaclass__ = M_A
...
>>> class B(object): __metaclass__ = M_B
...
>>> class C(A,B): pass # Error message less specific under 2.2
[...]
TypeError: metaclass conflict: the metaclass of a derived class must

https://www.ibm.com/developerworks/linux/library/l-pymeta2/?S_TACT=105AGX03&S_CMP=ART#resources

 be a (non-strict) subclass of the metaclasses of all its bases

The metatype conflict can be avoided by manually creating the needed metaclass for C:

Listing 15. Manually resolving metaclass conflict

>>> M_AM_B = type("M_AM_B", (M_A,M_B), {})
>>> class C(A,B): __metaclass__ = M_AM_B
...
>>> type(C)
<class 'M_AM_B'>

The resolution of metatype conflicts becomes more complicated when you wish to "inject" additional metaclasses into a
class, beyond those in its ancestors. Also, depending on the metaclasses of parent classes, redundant metaclasses can
occur -- both identical metaclasses in different ancestors and superclass/subclass relationships among metaclasses. The
module noconflictnoconflict is available to help users resolve these issues in a robust and automatic way (see Resources).

Conclusion
A number of warnings and corner cases are discussed in this article. Working with metaclasses requires a certain degree
of trial-and-error before the behavior becomes intuitive. However, the issues are by no means intractable -- this fairly
short article touches on most of the pitfalls. Play with the cases yourself. You will find, at the end of the day, that whole
new realms of program generalization are available with metaclasses; the gains are well worth the few dangers.

Resources
The authors continue to recommend Putting Metaclasses to Work by Ira R. Forman, Scott Danforth, (Addison-
Wesley 1999).

For metaclasses in Python specifically, Guido van Rossum's essay, Unifying types and classes in Python 2.2 is
useful.

Raymond Hettinger has written an excellent article on the descriptor protocol introduced in Python 2.2.
Descriptors are a means of altering the behavior of attribute/method access, which is an interesting programming
technique in itself. But of particular value relative to this article is Hettinger's explanation of the lookup chain that
underlies Python's concept of OOP.

Michele's noconflict module is discussed in the online Active State Python Cookbook. This module lets
users automatically resolve metatype conflicts.

The Gnosis Utilities library contains a number of tools for working with metaclasses, generally within the
gnosis.magic subpackage. You may download the last stable version of the whole package from gnosis.cx.

You can also browse the experimental branch, which includes a version of noconflict.

Coauthor Michele has written an article on the new method resolution order (MRO) algorithm in Python 2.3.
While most programmers can remain blissfully ignorant on the details of the changes, it is worthwhile for all
Python programmers to understand the concept of MRO -- and perhaps have an inkling that better and worse
approaches exist.

The predecessor to this article is Metaclass programming in Python, Part 1 (developerWorks, February 2003).

Guide to Python introspection (developerWorks, December 2002) showcases Python's introspection capabilities,
from basic to advanced.

Read David's Charming Python column on the developerWorks Linux zone.

Find more articles about Linux and Linux programming in the developerWorks Linux zone.

https://www.ibm.com/developerworks/linux/library/l-pymeta2/?S_TACT=105AGX03&S_CMP=ART#resources
http://www.aw-bc.com/catalog/academic/product/0,4096,0201433052,00.html
http://www.python.org/2.2/descrintro.html
http://users.rcn.com/python/download/Descriptor.htm
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/204197
http://gnosis.cx/download/Gnosis_Utils-current.tar.gz
http://gnosis.cx/download/gnosis/
http://www.python.org/2.3/mro.html
http://www.ibm.com/developerworks/linux/library/l-pymeta.html
http://www.ibm.com/developerworks/linux/library/l-pyint.html
http://www.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=charming+python%3A
http://www.ibm.com/developerworks/linux/

About the authors

Michele Simionato is a plain, ordinary, theoretical physicist who was driven to Python by a quantum
fluctuation that could well have passed without consequences, had he not met David Mertz. Now he has been
trapped in Python's gravitational field. He will let his readers judge the final outcome. You can contact
Michele at mis6+@pitt.edu, or you can read his Web site.

David Mertz thought his brain would melt when he wrote about continuations or semi-coroutines, but he put the gooey
mess back in his skull cavity and moved on to metaclasses. David may be reached at mertz-at-gnosis.cx; his life pored
over at his personal Web page. Suggestions and recommendations on this, past, or future columns are welcome. David's
book Text Processing in Python was recently published by Addison-Wesley; check it out.

Share this....
Digg this story del.icio.us Slashdot it!

mailto:mis6+@pitt.edu
http://www.phyast.pitt.edu/~micheles/
mailto:mertz-at-gnosis.cx
http://gnosis.cx/dW/
http://www.awprofessional.com/isapi/product_id~%7B5F1EAF18-40C5-4C46-9AC4-9CEF74BC3F0C%7D/catalog/product.asp
javascript:location.href='http://digg.com/submit?phase=2&url='+encodeURIComponent(location.href)+'&title='+encodeURIComponent(document.title)
javascript:location.href='http://digg.com/submit?phase=2&url='+encodeURIComponent(location.href)+'&title='+encodeURIComponent(document.title)
http://del.icio.us/post
javascript:location.href='http://slashdot.org/bookmark.pl?url='+encodeURIComponent(location.href)+'&title='+encodeURIComponent(document.title)
javascript:location.href='http://slashdot.org/bookmark.pl?url='+encodeURIComponent(location.href)+'&title='+encodeURIComponent(document.title)

