
DM8XX Presentation Subject 8: Erlang

DM8XX Presentation
Subject 8: Erlang

Bjørn Madsen

IMADA, SDU

May 25, 2009

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Solving TSP with branch and bound

Generate an initial solution, via a fast algorithm (eg. greedy)

Generate an initial set of partial tours, calculate their lower
bounds

Discard any partial tour with a lower bound higher than the
current best solution’s length

In turn add a city to each ”promising”partial tour, until you
have a full tour or the lower bound goes above the best length

Replace the best solution each time a better one is found

When all ”paths”are either discarded or done, we have an
optimal solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Implementation of a distributed TSP solver

One server, several nodes

Server contains a priority queue of partial tours as well as the
current best tour

Nodes request a partial tour when they need work

When they have a complete tour, they offer it to the server
and request more work

When the queue is empty and no nodes are currently working,
we have the best solution

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Java version

Using Remote Method Invocation (RMI), so nodes can call
methods on objects residing on the server

Needs to have an RMI registry running somewhere

Server binds to this registry, nodes find server through registry

Everything needs to use thread-safe version or run in
synchronized blocks

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Java version

Using Remote Method Invocation (RMI), so nodes can call
methods on objects residing on the server

Needs to have an RMI registry running somewhere

Server binds to this registry, nodes find server through registry

Everything needs to use thread-safe version or run in
synchronized blocks

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Java version

Using Remote Method Invocation (RMI), so nodes can call
methods on objects residing on the server

Needs to have an RMI registry running somewhere

Server binds to this registry, nodes find server through registry

Everything needs to use thread-safe version or run in
synchronized blocks

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Java version

Using Remote Method Invocation (RMI), so nodes can call
methods on objects residing on the server

Needs to have an RMI registry running somewhere

Server binds to this registry, nodes find server through registry

Everything needs to use thread-safe version or run in
synchronized blocks

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Java version

Using Remote Method Invocation (RMI), so nodes can call
methods on objects residing on the server

Needs to have an RMI registry running somewhere

Server binds to this registry, nodes find server through registry

Everything needs to use thread-safe version or run in
synchronized blocks

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Erlang version

Using Erlang message passing

Nodes need to have an Erlang system running on them

The master can spawn nodes on remote or local Erlang
systems

With minor rewriting, nodes can join or leave
mid-computation

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Erlang version

Using Erlang message passing

Nodes need to have an Erlang system running on them

The master can spawn nodes on remote or local Erlang
systems

With minor rewriting, nodes can join or leave
mid-computation

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Erlang version

Using Erlang message passing

Nodes need to have an Erlang system running on them

The master can spawn nodes on remote or local Erlang
systems

With minor rewriting, nodes can join or leave
mid-computation

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Erlang version

Using Erlang message passing

Nodes need to have an Erlang system running on them

The master can spawn nodes on remote or local Erlang
systems

With minor rewriting, nodes can join or leave
mid-computation

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Erlang version

Using Erlang message passing

Nodes need to have an Erlang system running on them

The master can spawn nodes on remote or local Erlang
systems

With minor rewriting, nodes can join or leave
mid-computation

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Single, multi-core computer

Quad-core computer

Solving a TSP instance with 30 cities

Java time: around 9 seconds

Erlang time:

Over four minutes...

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Comparison
Distributed

Eight computers on IMADA

Solving a TSP instance with 35 cities

Java time: 16 minutes

Erlang time:

I stopped the nodes after 2.5 hours...

The Erlang version even used two processes on each node,
utilizing both cores of the CPUs

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Conclusion

Even Ericsson themselves say it: Don’t use Erlang for speed,
use it for the easiness of distributing jobs

I tried to implement the Erlang version very close to the Java
version for comparison purposes. It can probably be
implemented a lot more efficient if done ”the Erlang way”

Solving the same problem was faster on my own quad-core
machine than distributed on eight dual-core machines. Maybe
there was too much network traffic overhead

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Conclusion

Even Ericsson themselves say it: Don’t use Erlang for speed,
use it for the easiness of distributing jobs

I tried to implement the Erlang version very close to the Java
version for comparison purposes. It can probably be
implemented a lot more efficient if done ”the Erlang way”

Solving the same problem was faster on my own quad-core
machine than distributed on eight dual-core machines. Maybe
there was too much network traffic overhead

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Conclusion

Even Ericsson themselves say it: Don’t use Erlang for speed,
use it for the easiness of distributing jobs

I tried to implement the Erlang version very close to the Java
version for comparison purposes. It can probably be
implemented a lot more efficient if done ”the Erlang way”

Solving the same problem was faster on my own quad-core
machine than distributed on eight dual-core machines. Maybe
there was too much network traffic overhead

Bjørn Madsen DM8XX Presentation Subject 8: Erlang



DM8XX Presentation Subject 8: Erlang

Conclusion

Even Ericsson themselves say it: Don’t use Erlang for speed,
use it for the easiness of distributing jobs

I tried to implement the Erlang version very close to the Java
version for comparison purposes. It can probably be
implemented a lot more efficient if done ”the Erlang way”

Solving the same problem was faster on my own quad-core
machine than distributed on eight dual-core machines. Maybe
there was too much network traffic overhead

Bjørn Madsen DM8XX Presentation Subject 8: Erlang


