
DM207

I/O-Efficient Algorithms and Data Structures

Fall 2009

Rolf Fagerberg

IOEADS Fall 2009 Page 1

Analysis of algorithms (DM507, DM508,. . .)

The standard model:

Memory

CPU

• Add: 1 unit of time

• Mult: 1 unit of time

• Branch: 1 unit of time

• MemAccess: 1 unit of time

IOEADS Fall 2009 Page 2

Reality

Memory hierarchy:

CPU Reg. Cache1

RAM

DiskCache2

Tertiary Storage

Access time Volume

Registers 1 cycle 1 Kb

Cache 5–10 cycles 1 Mb

RAM 50–100 cycles 1 Gb

Disk 30,000,000 cycles 1 Tb

CPU speed has improved

faster than RAM access

time and much faster than

disk access time

IOEADS Fall 2009 Page 3

Reality

Many real-life problems of Terabyte and even Petabyte size:

• Meteorology

• Geology, Geography, GIS

• Scientific computing

• Financial sector, banks

• Phone companies

• WWW

IOEADS Fall 2009 Page 4

The Data Explosion Problem

From Danish Center for Scientific Computing:

A major challenge. . . is the data explosion problem: Collecting

scientific data has progressed from the time when a scientist

scribbled notes on paper to automated data collection, using

many inexpensive sensors, which gives rise to a huge explosion

in the amount of collected data. Examples are numerous and

include meteorological data, seismic data, genetic data,

astronomical data, medical imaging, etc. To this must be added

the ever growing information archives in the arts and social

sciences, which require further large storage and processing

facilities.

IOEADS Fall 2009 Page 5

I/O bottleneck

I/O is the bottleneck

⇓

I/O should be optimized (not instruction count)

We need new models for this.

IOEADS Fall 2009 Page 6

Analysis of algorithms

New I/O-model:

CPU

Memory 2

Block

Memory 1

Aggarwal, Vitter, 1988Parameters:

N = no. of elements in problem.

M = no. of elements that fits in RAM.

B = no. of elements in a block on disk.

Cost: Number of I/O’s (block transfers) between Memory 1 and

Memory 2.

IOEADS Fall 2009 Page 7

Generic Example

Consider two O(N) algorithms:

1. Memory accessed randomly ⇒ page fault at each memory access.

2. Memory accessed sequentially ⇒ page fault every B memory

accesses.

O(N) I/Os vs. O(N/B) I/Os

Typically for disk: B = 103 − 105.

(Note: 105 minutes = 70 days, 105 days = 274 years.)

IOEADS Fall 2009 Page 8

Specific Examples

Three O(N log N) CPU-time sorting algorithms:

Worstcase Inplace

QuickSort +

MergeSort +

HeapSort + +

IOEADS Fall 2009 Page 9

Specific Examples

But:

QuickSort, MergeSort ∼ sequential access

HeapSort ∼ random access

So in terms of I/Os:

QuickSort: O(N log
2
(N/M)/B)

MergeSort: O(N log
2
(N/M)/B)

HeapSort: O(N log
2
(N/M))

IOEADS Fall 2009 Page 10

Goals of Course

• Goal I: Learn principles for designing I/O-efficient algorithms.

• Goal II: Get hands-on experience via projects.

• Goal III: See lots of beautiful algorithmic ideas.

• Goal IV: Sharpen analytical skills.

IOEADS Fall 2009 Page 11

Course Contents

• The I/O model(s).

• Algorithms, data structures, and lower bounds for basic problems:

– Permuting

– Sorting

– Searching (search trees, priority queues)

• I/O efficient algorithms and data structures for problems from

– computational geometry,

– strings,

– graphs.

IOEADS Fall 2009 Page 12

Course Formalities

Lectures:

• Theoretical (in the style of DM507, DM508, DM206, DM802,. . .).

• New stuff: 1995-2009.

• Aim: Principles and methods.

Project work:

• Several small/medium projects (3 ECTS in total).

• Aim: Hands-on (programming), thinking (theory).

IOEADS Fall 2009 Page 13

Course Formalities

Literature:

• Based on lecture notes and articles.

Prerequisites:

• DM507, DM508 (and a BA-degree).

Duration:

• 1st and 2nd quarter.

Credits:

• 10 ECTS (including project).

Exam:

• The projects (pass/fail), oral exam (7-scale).

IOEADS Fall 2009 Page 14

Statement of Aims

After the course, the participant is expected to be able to:

• Describe general methods and results relevant for developing

I/O-efficient algorithms and data structures, as covered in the

course.

• Give proofs of correctness and complexity of algorithms and data

structures covered in the course.

• Formulate the above in precise language and notation.

• Implement algorithms and data structures from the course.

• Do experiments on these implementations and reflect on the results

achieved.

• Describe the implementation and experimental work done in clear

and precise language, and in a structured fashion.

IOEADS Fall 2009 Page 15

Basic Results in the I/O-Model

Scanning: Θ(N

B
)

Sorting: Θ(N

B
log M

B

(N

M
))

Permuting: Θ(min{N, N

B
log M

B

(N

M
))})

Searching: Θ(log
B

(N))

Notable differences from standard internal model:

• Linear time = O(N

B
) 6= O(N)

• Sorting very close to linear time for normal parameters

• Sorting = permuting for normal parameters

• Permuting > linear time

• Sorting using search trees is far from optimal (search >> sort/N).

IOEADS Fall 2009 Page 16

Basic Results in the I/O-Model

Scanning: Θ(N

B
)

Sorting: Θ(N

B
log M

B

(N

M
))

Permuting: Θ(min{N, N

B
log M

B

(N

M
))})

Searching: Θ(log
B

(N))

Scanning is I/O-efficient (O(1/B) per operation). Hence, a few

algorithms and data structures (selection, stacks, queues) are

I/O-efficient (O(1/B) per operation) out of the box.

Most other algorithmic tasks need rethinking and new ideas.

IOEADS Fall 2009 Page 17

Stacks and Queues

With constant number of blocks in RAM:

O(1/B) I/Os per Push/Pop operation.

· · ·

O(1/B) I/Os per Dequeue/Enqueue operation.

· · · · · ·

IOEADS Fall 2009 Page 18

Selection
Recall the problem: For (unsorted) set of elements, find the kth largest.

Classic linear time (CPU-wise) algorithm:

1. Split into groups of 5 elements, select median of each.

2. Recursively find the median of this set of selected elements.

3. Split entire input into two parts using this element as pivot.

4. Recursively select in relevant part.

Step 1 and 3 are scans, step 2 recurse on N/5 elements, and none of the

lists made in step 3 are larger than around 7N/10 elements.

As (N/B) is the solution to T (N) = O(N/B) + T (N/5) + T (7N/10),

T (M) = O(M/B), the algorithm is also linear in terms of I/Os.

(This recurrence holds assuming the memory touched by a recursive call

(including all sub-calls) is contiguous, and that LRU caching is done.)

IOEADS Fall 2009 Page 19

