Permuting

Upper and Lower bounds

[Aggarwal, Vitter, 88]

Upper Bound

Assume instance is specified by each element knowing its final position:

Algorithm	Internal Cost	I/O Cost
1) Place each element directly	$\Theta(N)$	$\Theta(N)$
2) Sort on final position	$\Theta(N \log N)$	$\Theta\left(N / B \log _{M / B}(N / B)\right)$

Upper Bound

Internally, 1) always best.
Externally, 2) best when $1 / B \log _{M / B}(N / B) \leq 1$.
Note: This is almost always the case practice. Example:

$$
\begin{gathered}
B=10^{3}, M=10^{6}, N=10^{30} \\
\Downarrow \\
1 / B \log _{M / B}(N / B)=9 / 10^{3} \ll 1
\end{gathered}
$$

External Permuting:

$$
O\left(\min \left\{N / B \log _{M / B}(N / B), N\right\}\right)=O(\min \{\operatorname{sort}(N), N\})
$$

Lower Bound Model

Model of memory:

- Elements are indivisible: May be moved, copied, destroyed, but newer broken up in parts.
- Assume $M \geq 2 B$.
- May assume I/Os are block-aligned, and that at start [end], input [output] is in lowest contiguous positions on disk.

Lower Bound

We may assume that elements are only moved, not copied or destroyed.
Reason: For any sequence of I/Os performing a permutation, exactly one copy of each element exists at end. Change all I/Os performed to only deal with these copies. Result: same number of I/Os, same permutation at end, but now I/Os only move elements.

Consequence:

Memory always contains a permutation of the input

Define:

$$
S_{t}=\text { number of permutations possible to reach with } t \mathrm{I} / \mathrm{Os} .
$$

If new X choices to make during I/O: $S_{t+1} \leq X \cdot S_{t}$.

Bounds on Value of X

Type of I/O	Read untouched block	Read touched block	Write
X	$\frac{N}{B}\binom{M}{B} B!$	$N\binom{M}{B}$	$N\binom{M}{B}$

Note: At each I/O, we may have all three types of I/O available. There is at most N / B reads of untouched blocks in any I/O-sequence.

Hence, from $S_{0}=1$ and $S_{t+1} \leq X \cdot S_{t}$ we get

$$
S_{t} \leq\left(3\binom{M}{B} N\right)^{t}(B!)^{N / B}
$$

To be able to reach every possible permutation, we need $N!\leq S_{t}$. Thus,

$$
N!\leq\left(3\binom{M}{B} N\right)^{t}(B!)^{N / B}
$$

is necessary for any permutation algorithm with a worst case complexity of $t \mathrm{I} / \mathrm{Os}$.

Lower Bound Computation

$$
\begin{gathered}
\left(3\binom{M}{B} N\right)^{t}(B!)^{N / B} \geq N! \\
t\left(\log \binom{M}{B}+\log N+\log 3\right)+(N / B) \log (B!) \geq \log (N!) \\
t(3 B \log (M / B)+\log N+\log 3)+N \log B \geq N(\log N-1 / \ln 2) \\
t \geq \frac{N(\log N-1 / \ln 2-\log B)}{3 B \log (M / B)+\log N+\log 3} \\
t=\Omega\left(\frac{N \log (N / B)}{B \log (M / B)+\log N}\right) \\
\begin{array}{l}
\text { a) } \quad \log (x!) \geq x(\log x-1 / \ln 2) \\
\log (x!) \leq x \log x
\end{array} \\
\text { Using Lemma: b) } \quad \log \binom{x}{y} \leq 3 y \log (x / y) \text { when } x \geq 2 y \\
\text { c) }
\end{gathered}
$$

Lower Bound

$$
\begin{gathered}
\Omega\left(\frac{N \log (N / B)}{B \log (M / B)+\log N}\right) \\
=\Omega\left(\min \left\{\frac{N \log (N / B)}{B \log (M / B)}, \frac{N \log (N / B)}{\log N}\right\}\right) \\
=\Omega\left(\min \left\{Z_{1}, Z_{2}\right\}\right)
\end{gathered}
$$

Note 1: $Z_{1}=\operatorname{sort}(N)$
Note 2: $Z_{2}<Z_{1} \Leftrightarrow B \log (M / B)<\log N \Rightarrow B<\log N \Rightarrow$

$$
Z_{2}=\frac{N \log (N / B)}{\log N}=\frac{N(\log N-\log B)}{\log N}=\Theta(N)
$$

Note 3: $Z_{2} \leq N$ always
By Note 2 and 3, it is OK to substitute N for Z_{2} inside min.

The I/O Complexity of Permuting

We have proven:

$$
\Theta(\min \{\operatorname{sort}(N), N\})
$$

