
DM22 Programming Languages

Spring 2006

Project 2

Department of Mathematics and Computer Science

University of Southern Denmark

May 3, 2006

The purpose of this project is to implement in Prolog a program finding
solutions to the puzzle known by the name Professorspillet. The project is
to be done in groups of two persons.

Professorspillet

Professorspillet1 is a 16-piece puzzle. Each piece is quadratic and has half
a professor (torso or legs) at each of its four sides, and each professor has
clothing in one of four colors. The objective of the game is to lay out the
pieces in a 4x4 formation such that all professors formed along meeting edges
have clothing of the same color in the torso and the legs parts. The pieces
of the puzzle are depicted in Appendix A.

Task

The task is to implement a Prolog program which can generate all solu-
tions to Professorspillet one by one. More specifically, implement in Prolog
predicates

1Produced by Danspil. See http://www.danspil.dk/produkt.asp?ProductID=8483

for more info (note in particular the suggested player age of 11+ years and expected
playing time of 30 minutes(!)).

1



profSolution(S)

noOfProfSolutions(N)

such that the first is true iff S is a solution to the game, and the second is
true iff N is the total number of solutions (including symmetric ones) to the
game.

Here, a solution should be a list of oriented pieces, where an orientation is
between zero and three 90 degree clockwise turns of the piece compared to
the position it has in Appendix A. The actual representation of an oriented
piece is left to you.

The implementation must be based on the following recursive solution method:
The pieces are at all times divided into a list constituting a partial solution
and a list with the remaining pieces. Consider the slots of the 4x4 layout
numbered as shown below.

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

Then a partial solution of length k fills positions 0 to k − 1 (with professors
at edges matching according to the rules). At each step, the algorithm tries
to extend the partial solution by trying to place a remaining piece in the
next free position, k, and for each succesful attempt recurses with the new
value of partial solution and list of remaining pieces. In pseudo-code, a step
can be stated as

For each piece in remaining list

For each orientation of the piece

If fits in position k then

recurse with updated solution and remaining list

A solution is found if the length of the partial solution reaches 16. For
extracting each element of a list, the built-in predicate select may come in
handy.

2



Formalities

A printed report of two to five pages should be handed in. Prolog code and
any test data should be given as appendices. The main aim of the report
should be to describe the modeling and program design choices made during
development, the reasoning behind these choices, and the structure of the
final solution. Give two solutions found by your program, and state the total
number of solutions according to your program.

A copy of the Prolog code should be handed in using the aflever command
on the Imada system: Move to the directory containing your code and issue
the command aflever DM22. This will copy the contents of the directory to
a place accessible by the lecturer. Repeated use of the command is possible
(later uses overwrites the contents from earlier uses).

In the directory, you must for identification purposes have an ASCII file
named names.txt containing the names of the group members, with one
name per line.

You must hand in the report and the code by

Tuesday, May 23, 2006

3



A Pieces

4


