
Introduction to Haskell

Rolf Fagerberg

Spring 2007

1

Haskell

Functional language (no assignments)

• Purely functional

• Statically typed

• Rich typesystem

• Lazy (infinite data structures OK)

Named after Haskell Brooks Curry (1900–1982, USA,
mathematical logic).

Language in development. Haskell-1998: frozen version (used
here). Concrete implementation: Hugs interpreter + libraries.

2

Functions
Math:

a = 7 ← definitions
...f(x) = 2x + 5

g(y, z) = yz2 + z + 2

abs(x) =







x , if x ≥ 0

−x , otherwise

abs(f(g(a, 2))) ←evaluation

Haskell:a = 7 ← definitions
...f x = 2*x + 5g y z = y*z�2 + z + 2abs x| x >= 0 = x| otherwise = -xabs(f(g a 2)) ←evaluation

3

Types
Math:

3.0 ∈ R

g : R× R→ R

g(y, z) = yz2 + z + 2

Haskell:3.0 is of type Float
g :: Float -> Float -> Float

g y z = y*z^2 + z + 2

4

Haskell
Literals:277, -3.141527, 7.89e-6, 'A',�Hello World�
Built-In TypesInt, Bool, Float, Double, Char, String,Integer, Rational, Complex,...
Type Constructors (even more to come)

Lists (∼ arrays): [℄a :: [Int℄a = [1,2,3℄

Tuples (∼ records): ()b :: (Char,Bool,Int)b = ('A', True,1)

5

Haskell Basic Elements

Names (identifiers, “variables”) associated with Values
(integers, booleans, strings, and also functions)

Each value belongs to a Type (a domain/set of values)

Definitions associate names with values.

Literals and other Constructors creates basic values.

Functions (including operators : +, *,. . .) take values to new
values

Evaluation of Expressions built using basic values and
functions.

6

Hugs

Interpreter (+ libraries) for Haskell-1998.

Reads definitions in script file(s).

Evaluates expressions written in its shell using definitions in
script and in built-in definitions in standard library Prelude.hs

Note: definitions cannot be given at command line, only in
scripts.

7

Some Haskell Syntax

• Off-side rule (indentation gives block structure)

• Comments:
Single line: -- ...
omment. . .
Block Comment: {- ...
omment... -}

• Identifiers: Letter [Letter, Digit, _ , ']∗

Value names, parameters, (type parameters):
Small initial letter

Type names, (constructors, modules, type classes):
Capital initial letter

• Some words reserved (
ase,
lass, data, default,deriving, do, else, if, import, in, infix, infixl,infixr, instan
e, let, module, newtype, of, then,type, where)
8

Recursion

No assignments⇒ no loops

(Loops over lists exist - see list comprehensions below)

Hence, in functional programming, recursion is used a lot.

power2 :: Int -> Int

power2 n

| n==0 = 1

| n>0 = 2 * power2 (n-1)

9

Operators
Operators = built-in set of functions with short non-letter names.

Examples: + (addition), - (subtraction), == (equality test), <=
(inequality test), && (boolean AND), || (boolean OR) ++ (list
concatenation), : (element preprending to lists (“push”)), !! (list
indexing), . (function composition).

Most have two parameters and are written using infix notation:2 + 3 ← infixadd 2 3 ← usual prefix notation for functions

We can convert between “operator” and “standard” version of
two parameter functions

Def:add x y = x + y add 2 3 ; 5(+) 2 3 ; 52 `add` 3 ; 5

10

Associativity and Binding Power

To save on parentheses, operators (along with function
application) are given diffent binding powers:2 * 3 + f 4 � 2 = ((2 * 3) + ((f 4) � 2))
Haskell has nine levels of binding powers (9 is strongest).
To resolve evaluation order of sequences of operators of equal
binding power, they have an associativity assigned:4 + 3 + 2 + 1 = (((4 + 3) + 2) + 1)4 - 3 - 2 - 1 = (((4 - 3) - 2) - 1)4 � 3 � 2 � 1 = (4 � (3 � (2 � 1)))

So + and - are left associative, whereas � is right associative.

11

Do-it-yourself operators

You can define new operators. Example: Minimum operator:

(??) :: Int -> Int -> Int

x ?? y

| x > y = y

| otherwise = x

Now:3 ?? 4 ; 3
Define associativiy and binding power: infixl 7 ??

The names of operators must be created using the following
characters:

!#$%&*+./<=>?@\^|-~

12

Pattern Matching

Definitions may use pattern matching on the parameters (often
more elegant than guards):fa
 0 = 1fa
 n = fa
 (n-1) * nfliptuple (x,y) = (y,x)onAxe (0,y) = TrueonAxe (x,0) = TrueonAxe (x,y) = FalseonAxe (0,_) = TrueonAxe (_,0) = TrueonAxe (_,_) = False

or True _ = Trueor _ True = Trueor _ _ = Falsesum :: [Int℄ -> Intsum [℄ = 0sum (x:xs) = x + sum xssum [1,2,3℄ ; 6sum [℄ ; 0

13

Pattern Matching

A pattern is made of:

• Literals 24, True, 's', [℄

• Identifiers x, y (wild card _ is a nameless variable)

• Tuple constructor (x,y,z)
• List constructor (x:xs)
• More constructors later. . .

A pattern can be hierarchical: ("hi",(x:(x':xs),(2,0)))

A pattern can match or fail. To match, all sub-patterns must
recursively match. When a match occurs, any matched
identifiers are bound to the value matched.

14

Polymorphism
Types can be parametric
on
at :: [[Int℄℄ -> [Int℄
on
at [℄ = [℄
on
at (x:xs) = x ++
on
at xs
on
at [[1,2℄,[4,5,6℄℄ ; [1,2,4,5,6℄
on
at :: [[a℄℄ -> [a℄
on
at [℄ = [℄
on
at (x:xs) = x ++
on
at xszip :: [a℄ -> [b℄ -> [(a,b)℄zip (x:xs) (y:ys) = (x,y) : zip xs yszip (x:xs) [℄ = [℄zip [℄ zs = [℄zip [1,2,3℄ ['a','b'℄ ; [(1,'a'),(2,'b')℄

15

Functions as parameters and results

In Haskell, functions are values.

Can be passed to and from functions (then called high-order
functions).

Very useful high-order functions (most discussed later):map, filter, zipWith, foldl, foldr, foldl1, foldr1map :: (a -> b) -> [a℄ -> [b℄map f [℄ = [℄map f (x:xs) = f x : map f xs

16

Functions as parameters and results

Generating functions as results:

• Composition:f = g . htwi
e f = f . f

• Partial application (currying):add :: Int -> Int -> Intadd x y = x + yaddOne :: Int -> IntaddOne = add 1 oraddOne = (1+)addOneAll :: [Int℄ -> [Int℄addOneAll = map (add 1)

17

	Haskell
	Functions
	Types
	Haskell
	Haskell Basic Elements
	Hugs
	Some Haskell Syntax
	Recursion
	Operators
	Associativity and Binding Power
	Do-it-yourself operators
	Pattern Matching
	Pattern Matching
	Polymorphism
	Functions as parameters and results
	Functions as parameters and results

