Propositional Calculus

Atomic sentence: p, q, r . . .

Boolean operators:

```
\neg p — not p.

p \land q — p and q.

p \lor q — p or q.

p \Rightarrow q — if p then q

p \Leftrightarrow q — p if and only if q.
```

Sentence: Either an atomic sentence or a Boolean operator applied to sentences. Examples:

```
\begin{array}{l} p. \\ p \lor q \\ \neg p \Leftrightarrow (q \lor p). \end{array}
```

A literal is either an atomic sentence or the negation of an atomic sentence.

Examples: $p, q, \neg p, \neg q$.

A sentence is in *conjunctive normal form* (CNF) if it is the disjunction of literals. A set of sentences is in CNF if each sentence is in CNF.

Example: The following set of sentences is in CNF.

```
\begin{array}{l} p. \\ \neg p \lor q \lor r. \\ q \lor \neg r. \end{array}
```

Converting a sentence to CNF:

- 1. Replace every occurrence of $\alpha \Leftrightarrow \beta$ by $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. When this is complete, the sentence will have no occurrence of \Leftrightarrow .
- 2. Replace every occurrence of $\alpha \Rightarrow \beta$ by $\neg \alpha \lor \beta$. When this is complete, the only Boolean operators will be \lor , \neg , and \land .
- 3. Replace every occurrence of $\neg(\alpha \lor \beta)$ by $\neg\alpha \land \neg\beta$; every occurrence of $\neg(\alpha \land \beta)$ by $\neg\alpha \lor \neg\beta$; and every occurrence of $\neg\neg\alpha$ by α . Repeat as long as applicable. When this is done, all negations will be next to an atomic sentence.
- 4. Replace every occurrence of $(\alpha \land \beta) \lor \gamma$ by $(\alpha \lor \gamma) \land (\beta \lor \gamma)$, and every occurrence of $\alpha \lor (\beta \land \gamma)$ by $(\alpha \lor \beta) \land (\alpha \lor \gamma)$. Repeat as long as applicable. When this is done, all conjunctions will be at top level.
- 5. Break up the top-level conjunctions into separate sentences. That is, replace $\alpha \wedge \beta$ by the two sentences α and β . When this is done, the set will be in CNF.

Example:

```
Start: (p \Rightarrow q) \Leftrightarrow r.

After step 1: ((p \Rightarrow q) \Rightarrow r) \land (r \Rightarrow (p \Rightarrow q)).

After step 2: (\neg(\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q)).

Step 3(a): ((\neg \neg p \land \neg q) \lor r) \land (\neg r \lor (\neg p \lor q)).

After step 3: ((p \land \neg q) \lor r) \land (\neg r \lor (\neg p \lor q)).

After step 4: ((p \lor r) \land (\neg q \lor r)) \land (\neg r \lor (\neg p \lor q)).

After step 5: \{p \lor r.

\neg q \lor r.

\neg r \lor \neg p \lor q.
```

Resolution: Rules of Inference

Rule 1: If a literal appears more than once in a CNF sentence, all but the first may be dropped. Example: From $p \lor \neg q \lor p$, infer $p \lor \neg q$.

Rule 2: If a CNF sentence contains both an atom and its negation, then the sentence is useless, and may be ignored.

Example: The sentence p $\vee \neg q \vee \neg p$ is useless.

Rule 3: Let S1 be the sentence $\alpha_1 \vee \ldots \vee \alpha_k$ and let S2 be the sentence $\beta_1 \vee \ldots \vee \beta_n$, where each α and each β is a literal. Suppose that for some particular i and j, α_i is the negation of β_j . Then it is possible to infer a new sentence S3 which is the disjunction of all the α 's except α_i with all the β 's except β_j .

Examples:

```
If S1 is p \lor q \lor r and S2 is \neg q \lor \neg s, infer p \lor r \lor \neg s.
If S1 is \neg p \lor s and S2 is r \lor p, infer r \lor s.
If S1 is p and S2 is \neg p \lor q, infer q.
If S1 is p and S2 is \neg p, infer the empty sentence.
```

Resolution: Proof Technique

To prove sentence ϕ from a set of axioms Γ :

```
begin Set \Delta = \Gamma \cup \{\neg \phi\};
Convert \Delta to CNF;
For each sentence S \in \Delta, apply rule 1 or rule 2 if applicable.
Loop Find two sentences S1 and S2 in \Delta where rule 3 applies, but has not been previously used;
If there are no such two sentences, then return "\phi cannot be proven."
Apply rule 3 to get a new sentence S3;
If S3 is the empty sentence, then return "\phi has been proven."
If either rule 1 or rule 2 applies to S3, then apply it;
Add S3 to \Delta
Endloop
```

Example:

```
Given: 1. p \Leftrightarrow (r \lor s).
         2. r \Rightarrow \neg p.
         3. s \Rightarrow \neg p.
Prove: H. \neg p \land \neg r \land \neg s.
    Negation of H: 4. \neg(\neg p \land \neg r \land \neg s).
    Converted to CNF.
1a. \neg p \lor r \lor s.
1b. \neg r \lor p.
1c. \neg s \lor p.
2. \neg r \lor \neg p.
3. \neg s \lor \neg p.
4. p \vee r \vee s.
From 4 and 1a, infer
                                           5. r \lor s \lor r \lor s.
From 5 using rule 1, infer
                                           6. r V s.
From 6 and 1b, infer
                                           7. p V s.
From 7 and 1c, infer
                                           8. p V p.
From 8, using rule 1, infer
                                           9. p.
From 9 and 2, infer
                                           10. \neg r.
From 9 and 3, infer
                                           11. ¬s.
From 11 and 6, infer
                                           12. r.
From 12 and 10, infer
                                           13. ∅.
```

Syntax of Predicate Calculus

The predicate calculus uses the following types of symbols:

Constants: A constant symbol denotes a particular entity. E.g. "john", "muriel" "1".

Functions: A function symbol denotes a mapping from a number of entities to a single entities: E.g. "father_of" is a function with one argument. "plus" is a function with two arguments. "father_of(john)" is some person. "plus(2,7)" is some number.

Predicates: A predicate denotes a relation on a number of entities. e.g. "married" is a predicate with two arguments. "odd" is a predicate with one argument. "married(john, sue)" is a sentence that is true if the relation of marriage holds between the people John and Sue. 'odd(plus(2,7))" is a true sentence.

Variables: These represent some undetermined entity. Examples: "X" "S1" ...

Boolean operators: \neg , \lor , \land , \Rightarrow , \Leftrightarrow .

Quantifiers: The symbols \forall (for all) and \exists (there exists).

Grouping symbols: The open and close parentheses and the comma.

A term is either

- 1. A constant symbol; or
- 2. A variable symbol; or
- 3. A function symbol applied to terms.

Examples: "john", "X", "father_of(john)", "plus(X,plus(1,3))".

An *atomic formula* is a predicate symbol applied to terms. Examples: "odd(X)" "odd(plus(2,2))", "married(sue,father_of(john))".

A formula is either

- 1. An atomic formula; or
- 2. The application of a Boolean operator to formulas; or
- 3. A quantifier followed by a variable followed by a formula.

```
Examples: "odd(X)," "odd(X) \vee \negodd(plus(X, X))," "\exists_X odd(plus(X, Y))," "\forall_X odd(X) \Rightarrow \negodd(plus(X,3))."
```

A *sentence* is a formula with no free variables. (That is, every occurrence of every variable is associated with some quantifier.)

A literal is either an atomic formula or the negation of an atomic formula.

```
Examples: odd(3). \negodd(plus(X,3)). married(sue,Y).
```

A *clause* is the disjunction of literals. Variables in a clause are interpreted as universally quantified with the largest possible scope.

```
Example: odd(X) \lor odd(Y) \lor \neg odd(plus(X,Y)) is interpreted as \forall_{X,Y} odd(X) \lor odd(Y) \lor \neg odd(plus(X,Y)).
```

Converting a sentence to clausal form.

- 1. Replace every occurrence of $\alpha \Leftrightarrow \beta$ by $(\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)$. When this is complete, the sentence will have no occurrence of \Leftrightarrow .
- 2. Replace every occurrence of $\alpha \Rightarrow \beta$ by $\neg \alpha \lor \beta$. When this is complete, the only Boolean operators will be \lor , \neg , and \land .
- 3. Replace every occurrence of $\neg(\alpha \lor \beta)$ by $\neg \alpha \land \neg \beta$; every occurrence of $\neg(\alpha \land \beta)$ by $\neg \alpha \lor \neg \beta$; and every occurrence of $\neg \neg \alpha$ by α .

New step: Also, replace every occurrence of $\neg \exists_{\mu} \alpha$ by $\forall_{\mu} \neg \alpha$ and every occurrence of $\neg \forall_{\mu} \alpha$ by $\exists_{\mu} \neg \alpha$.

Repeat as long as applicable. When this is done, all negations will be next to an atomic sentence.

- 4. (New Step: Skolemization). For every existential quantifier \exists_{μ} in the formula, do the following: If the existential quantifier is not inside the scope of any universal quantifiers, then
 - i. Create a new constant symbol γ .
 - ii. Replace every occurrence of the variable μ by γ .
 - iii. Drop the existential quantifier.

If the existential quantifier is inside the scope of universal quantifiers with variables $\Delta_1 \dots \Delta_k$, then

- i. Create a new function symbol γ .
- ii. Replace every occurrence of the variable μ by the term $\gamma(\Delta_1 \dots \Delta_k)$
- iii. Drop the existential quantifier.

```
Example. Change "\exists_X blue(X)" to "blue(sk1)".
Change \forall_X \exists_Y odd(plus(X,Y)) to \forall_X odd(plus(X,sk2(X)).
Change \forall_{X,Y} \exists_Z \forall_A \exists_B p(X,Y,Z,A,B) to p(X,Y,sk3(X,Y),A,sk4(X,Y,A)).
```

5. New step: Elimination of universal quantifiers:

Part 1. Make sure that each universal quantifier in the formula uses a variable with a different name, by changing variable names if necessary.

Part 2. Drop all univeral quantifiers.

```
Example. Change [\forall_X \ p(X)] \lor [\forall_X \ q(X)] \ to \ p(X) \lor q(X1).
```

- 6. (Same as step 4 of CNF conversion.) Replace every occurrence of $(\alpha \land \beta) \lor \gamma$ by $(\alpha \lor \gamma) \land (\beta \lor \gamma)$, and every occurrence of $\alpha \lor (\beta \land \gamma)$ by $(\alpha \lor \beta) \land (\alpha \lor \gamma)$. Repeat as long as applicable. When this is done, all conjunctions will be at top level.
- 7. (Same as step 5 of CNF conversion.) Break up the top-level conjunctions into separate sentences. That is, replace $\alpha \wedge \beta$ by the two sentences α and β . When this is done, the set will be in CNF.

Example:

Start.
$$\forall_X [\text{even}(X) \Leftrightarrow [\forall_Y \text{ even}(\text{times}(X,Y))]]$$

After Step 1:
$$\forall_X [[\operatorname{even}(X) \Rightarrow [\forall_Y \operatorname{even}(\operatorname{times}(X,Y))]] \land [[\forall_Y \operatorname{even}(\operatorname{times}(X,Y))] \Rightarrow \operatorname{even}(X)]].$$

After step 2:
$$\forall_X [[\neg \text{even}(X) \lor [\forall_Y \text{ even}(\text{times}(X,Y))]] \land [\neg [\forall_Y \text{ even}(\text{times}(X,Y))] \lor \text{even}(X)]].$$

After step 3:
$$\forall_X [[\neg \text{even}(X) \lor [\forall_Y \text{ even}(\text{times}(X,Y))]] \land [[\exists_Y \neg \text{even}(\text{times}(X,Y))] \lor \text{even}(X)]].$$

After step 4:
$$\forall_X [[\neg \text{even}(X) \lor [\forall_Y \text{ even}(\text{times}(X,Y))]] \land [\neg \text{even}(\text{times}(X,\text{sk}1(X))) \lor \text{even}(X)]].$$

After step 5:
$$[\neg \text{even}(X) \lor \text{even}(\text{times}(X, Y))] \land [\neg \text{even}(\text{times}(X, \text{sk1}(X))) \lor \text{even}(X)].$$

Step 6 has no effect.

After step 7:
$$\neg \text{even}(X) \lor \text{even}(\text{times}(X, Y)).$$

 $\neg \text{even}(\text{times}(X, \text{sk1}(X))) \lor \text{even}(X).$