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1. Mathematical Concepts



Mathematical Concepts

Numbers

e set of real numbers: R

e the set R? is the set of ordered pairs (x, y) of real numbers
(eg, coordinates of a point wrt a pair of axes, the Cartesian plane)

e the set R” is the set of ordered tuples (x1, o, ..., x,) of real numbers
(Euclidean space)
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Matrices and Vectors

sion

al Networks

e A matrix is a rectangular array of numbers or symbols. It can be written

as
411 812 * - din
dap1 a2 - - ap
dml dm2 " °* Amn

e An n x 1 matrix is a column vector, or simply a vector:

vi
V2
vV =
Vn
e the set R” is the set of vectors [x1, xs,...,x,]" of real numbers (eg,

coordinates of a point wrt an n-dimensional space, the Euclidean Space)
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Scalar product of two vectors

e For two vectors

Vi w1

%] w2
v = w =

Vn Wn

the scalar (or dot) product denoted v - w, is the real number given by

V-W=ViW; + VoW + ...+ V,W,
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Functions Logitic

e a function f on a set X' into a set ) is a rule that assigns a unique
element f(x) in S to each element x in X.

y = f(x)
y dependent x independent
variable variable
e a linear function has only sums and scalar multiplications, that is, for

variable x € R and scalars a, b € R:

f(x):=ax+b
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Equations

e Quadratic equation

ax? + bx+c=0, a#0.

e closed form or analytical solution:

Aqguadratic function: y=4x"2+5x-10

—b—+/b*—4ac .
Xx=— »
! 2a .
—b++/b?—4ac .

X2 — ———
2a -10
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Polynomial Equations

e A polynomial of degree n in x is an expression of the form:
Pn(x) = ap + a1x + X% 4 4 apx”,
where the a; are real constants, a, # 0, and x is a real variable.
e P,(x) =0 has at most n solutions, eg:
X3 —Tx+6=(x—1)(x—-2)(x+3)=0,
which are called roots or zeros of P,(x)

¢ No general (closed) formula



Differentiation

A line L through a point (xo, f(x0))
of f can be described by:

y =m(x —xp) + f(x0)
The derivative is the slope of the line
that is tangent to the curve:

y = f'(x0)(x = x0) + f(x0)
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Mathematical Concepts

Functions of Several Variables

e A function f of n real variables is a rule that assigns a unique real
number f(xi, xo, ..., X,) to each point (x1, x2,...,x,)

Example in R?:

f(x,y) = V102 — 2 = 2

X2 +y?+22=10
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. . . Logistic Regression
Partial Derivatives

e The first partial derivative of the function (x, y) with respect to the
variables x and y are:

filey) = fim TR ZIOIV_ D )
6(X7y)=k|ig10f(x’y+kz_ &7 gf(m/)

e Their value in a point (xg, yo) is given by:

f(x0:y0) = <88Xf(X.,y)>

(x0,¥0)

f(x0, Y0) = (;i“&ﬂ)

(x0,¥0)
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2. Machine Learning
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Machine Learning

Forms of Machine Learning

e Supervised learning
the agent is provided with a series of examples and then it generalizes from those examples to
develop an algorithm that applies to new cases.

Eg: learning to recognize a person’s handwriting or voice, learning to distinguish between junk

and welcome email, and learning how to identify a disease from a set of symptoms.

e Unsupervised learning
Correct responses are not provided, but instead the agent tries to identify similarities between the

inputs so that inputs that have something in common are categorised together.

e Reinforcement learning:
the agent is given a general rule to judge for itself when it has succeeded or failed at a task during
trial and error. The agent acts autonomously and it learns to improve its behavior over time.

Eg: learning how to play a game like backgammon (success or failure is easy to define)

e Evolutionary learning:
the agent adapts to improve its success and chance of having offspring in the environment.

Success assessed by fitness, which corresponds to a score for how good the current solution is.



Supervised Learning

e inputs that influence outputs
inputs: independent variables, predictors, features
outputs: dependent variables, responses

e goal: predict value of outputs

e supervised: we provide data set with exact answers

Mathematical Concepts
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Artificia

e regression problem ~~ variable to predict is continuous/quantitative

e classification problem ~~ variable to predict is discrete/qualitative
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Supervised Learning Problem

Given m points (pairs of numbers) (x1,y1), ..., (Xm, Ym)

Task determine a function 7(x) of a simple form such that

fla) =y f(Xm) = Y-

The type of function: polynomials, exponential functions, logistic may be
suggested by the nature of the problem (the underlying physical law, the type
of response)

~ Corresponds to fitting a model to the data



Supervised Learning Problem
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Living area (feet?) | Price (10003s)

2104
1600
2400
1416
3000

housing prices

400
330
369
232
540

price (in $1000)

500 1000 1500 2000 2500 3000

square feet

3500

4000

4500 5000

20
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Example: k-Nearest Neighbors

¢ Regression
Given (X1, y1), ..., (Xm, ym) predict the response value y for a new input

X as:

R =7 X v

X €NK(X)

7(X) is the average of the k closest points
It requires the definition of a distance metric, eg, Euclidean distance

1. Rank the data points (X1, 1), ..., (Xm, ¥m) in increasing order of

distance from X in the input space, ie, d(X;,x) = /> _.(xj — x;)%.

2. Set the k best ranked points in Ny(X).

3. Return the average of the y variables of the k data points in N(X).

21
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Example: k-Nearest Neighbors A

¢ Classification
Given (X1,y1), ..., (Xm, ym) predict the class y for a new input x as:

P 1
G(X) = argmaxgeg Z P

X €Nk (X)|yi=G

corresponds to a majority rule.

1. Rank the data points (X1, 1), ..., (Xn. ¥m) in increasing order of

distance from X in the input space, ie, d(X;,x) = /> _.(xj — x;)%.
2. Set the k best ranked points in N(X).

3. Return the class that is most represented in the k data points of
N (X).

21



Machine Learning

Learning model

UNKNOWN TARGET FUNCTION
£ X~

(ideal credit approval function)

TRAINING EXAMPLES
0Oy s e (X 38D

(historical records of credit customers)

k LEARNING FINAL

ALGORITHM | | HYP‘;?,'ES'S

(final credit approval formula)

HYPOTHESIS SET
H

(set of candidate formulas)

22



Outline

3. Linear Regression
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Linear Regression

Linear Regression
e The hypothesis set 7/ is made by linear functions

e We search for the line y = ax + b that fits best the data:

e we measure the distance of the points (xi, 1), ..., (xm, ym) from the
straight line by the vertical direction (the y-direction).

e we look for the line that minimizes the sum of the squares of the
distances from the points (x1, y1),. .., (Xm, ¥m)

e each point (x;, y;), j = 1..m with abscissa x; has the ordinate ax; + b in
the fitted line. The distance from the actual data (x;, y;) is |y; — ax; — b|

e the sum of square errors is
m

7 2

L=> (y—ag—b)
j=1

24
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Partial Derivative

e A necessary condition for E to be minimum is

9 . m

aL:—z.Z(yj—axj—b)zo
j=1

8,\ m

%L:—2;Xj(w—axj'—b):0

e We can rewrite as:

{ bm+a)y xi= >y
by X +ay x? = > xy,

which is a system of linear equations in the variables [a, b].

e The solution to this systems gives the values of a and b that minimize
the square distance. They can be calculated in closed form.

25
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Analytical Solution

Closed form solution:

_ 2 =X —¥)

a -
2 —X%)?
b=y — ax
where
_ 1
X = — X
m J
_ 1
Yy == Yj
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Linear Regression

Learning Task: Overview

Learning = Representation + Evaluation 4+ Optimization

o Representation: formal language that the computer can handle.
Corresponds to choosing the set of functions that can be learned, ie. the
hypothesis space of the learner. How to represent the input, that is,
what features to use.

e Evaluation: an evaluation function (aka objective function or scoring
function)

e Optimization. a method to search among the learners in the language
for the highest-scoring one. Efficiency issues. Common for new learners
to start out using off-the-shelf optimizers, which are later replaced by
custom-designed ones.

28
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3. Linear Regression
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Linear Regression with Several Variables i

Living area (feet?) | #bedrooms | Price (10008s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 240

30



Linear Regression

Representation of hypothesis space:
h(x) = 0o + 61 linear function
if we know another feature:
h(x) = 0 + 011 + O2x2 = h(0, %)

for conciseness, defining xo = 1
2
h(0,x)=0-3 = 0ix
i=0

Notation:

e p num. of features, 0 vector of p + 1 parameters, 6 is the bias
e Xx;; is the value of feature i for sample j, for i =1..p,j =1..m

e y; is the value of the response for sample j

33
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Evaluation
loss function L(y, h(X)) for penalizing errors in prediction.
Most common is squared error loss:

L(y. h(8,%)) = (v — h(0,%))?

this leads to minimize:

min L(6)
0

Optimization

L(6) = Z <yj - h(gﬁ))z cost function

34



Polynomial Regression

Generalize the linear function y = a + bx to a polynomial of degree k

Representation
h(x) = p(0,x) = Op + O1x + - - - + Orx*

where kK < m — 1.
~ Each term acts like a different variable in the previous case.

X = [1XX2...Xn}T

Evaluation Then [ takes the form
10)= 3505 - 0.5
j=1

this is a function of k + 1 parameters g, - - , 0.

35
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Optimization
The necessary condition for L to be minimum gives a system of k + 1 linear
equations:

87“9) _ o For k=3 we obtain (summations are all from 1 to m):

0

i[(_‘):o Ogm + 912)<j+0922)<j'2 +93ij3: 7

96 Oo > x; + 012 X7 + 022 %7 +03 3 x} = 2o xy;
0o X2 + 013 + 023 x! +033 57 = 3 xPy;
B> xP + 012 xt + 02557 4033 x7 = > xPy;

o i@ =0

00, which can be solved in closed form.

36
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Polynomial of order 3

0.0 0.2 0.4 0.6 0.8 10
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Basis Functions

Combining several variables with a fixed set of nonlinear functions known as
basis functions.

Representation

h(Q X) =0y + Z 0ix; + Z Z Qi XX + Z Z Z Qo XiXicXe
i=1 k=1 i=1 k=1/¢=1

- =

h(0, %) = 0o + ;@@(X) =0-9¢(X)

h is now a nonlinear function of input vector X but h is linear in ¢

38
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Training and Assessment Al Neura Newors

Use different data for different tasks:

e Training and Test data: holdout cross validation
e If small data: k-fold cross validation
Avoid peeking:
e Weights learned on training data.
e Parameters and model compared on validation data

e Final assessment on test data

40



Model Comparison

= 2 on training data
[h(@,x) - y)} on test data

average loss

m

—

—~

1

—_

1
N =
]
L

>
~—

Nl
R
N—r

|
=
—_

N

Jj=1
Erms = \/2E[L(6)]/m root mean square
1
—=o&— Training
—O— Test
Z 05
&
0
0 3, 6 9
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4. Logistic Regression
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Classification and Logistic Regression

Binary classification problem: y = {0,1} or y = {—1, 1} (labels)

e We could use the linear regression algorithms that we saw and round.
e Or: we change our hypothesis:

h(d,%) = g(0 - X) g:R—[0,1],h:RP = [0,1].

In ML g(+) is called activation function

A common choice for g is the logistic function ]
or sigmoid function: ,

43



Logistic Regression

e Note that g is nonlinear in both the parameters and the inputs
e However, the decision surface corresponds to h(X) = constant and hence

to a linear function of X:

0 - X = g~(constant) = constant

in one dimension (y, x;) it is a vertical line

in two dimensions (y, (x1, x2)) it is a line

in three dimensions (y, (x1, x>, x3)) it is a plane

in more dimensions (y, (xi,...,Xp)) it is an hyperplane

o how do we determine 67 (see Appendix)

44
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5. Artificial Neural Networks
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A neuron in a living biological system

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

Nucleus

Synapses

Cell body or Soma

Signals are noisy “spike trains” of electrical potential

Mathematical Concepts
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MCCU"OCh—PittS “unit" (1943) Artificial Neural Networks

Activities within a processing unit

- Vi
Processing unit
_ T T
wy I |
v, Compute effective input: : Compare effective : Produce output
> W ; input to threshold | of 0 or 1. —>
VW +VaWatVaWs i value. |
| w3 | |
| |
Vs




A rtifi c i a I N e u ra I N etwor ks Artificial Neural Networks

~ “The neural network” does not exist. There are different paradigms for
neural networks, how they are trained and where they are used.

e Artificial Neuron

e Each input is multiplied by a weighting factor.

e Output is 1 if sum of weighted inputs exceeds the threshold value;
0 otherwise.

e Network is programmed by adjusting weights using feedback from
examples.

51



MCCU"OCh—PittS “unit" (1943) Artificial Neural Networks

Output is a function of weighted inputs:

ai=g(in) =g | Y wja
j

Bias Weight
do=- a;= g(in;)
) 8
Input Input  Activation Output
Links Function ~ Function Output Links

Changing the bias weight wg j moves the threshold location

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

52



Artificial Neural Networks

Activation functions
Non linear activation functions

 (in) , &)

//_z

ini

il’li
(a) (b)

(a) is a step function or threshold function
(mostly used in theoretical studies)

(b) is a continuous activation function, e.g., sigmoid function 1/(1 4 e *)
(mostly used in practical applications) ~ sigmoid neuron

~ perceptron
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Implementing logical functions Al Nl Netwrt
W, = 1.5 W,= 0.5
wl}~ w1}~
/
W, =1 W, =1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented by
combining this type of units

54



Network structures Artificial Neural Networks

Architecture: definition of number of nodes and interconnection structures
and activation functions o but not weights.

e Feed-forward networks:
no cycles in the connection graph

¢ (no hidden layer)

o (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

e Recurrent networks:
connections between units form a directed cycle.
— internal state of the network
exhibit dynamic temporal behavior (memory, apriori knowledge)
— for associative memory

55



Feed-Forward Networks — Use

Neural Networks are used in classification and regression

e Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

e k-way classification
- divide single output into k portions
- k separate output unit

e continuous output
- identity activation function in output unit

Artificial Neural Networks

56
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5. Artificial Neural Networks
Single-layer Networks
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Single-layer N N Artificial Neural Networks

Perceptron output

Input ~ Output 0 o=
Units I Units

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

58



Numerical Example

widh

Boolean Classification

Mathematical C

N
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The (Fisher's or Anderson's) iris data set gives measurements in centimeters
of the variables: sepal length and petal length and petal width for 50 flowers
from 2 species of iris: Iris setosa, and versicolor.

Petal Dimensions in Iris Blossoms

45
s
40 s
s S
] s
o s's g 8 v
s v
s s ¢ vV
s0-] s VoV v
WARY,
v WV
v W
25 vV
s v v
20 v
15
S SelosaPeats
10

Two classes encoded as 0/1

iris.data:

Sepal.Length Sepal.Width

4.9
5.

oo oo,
0N O B ;g

3.

1
6
0
.4
4
7

N W wwN

Species id
setosa
versicolor
versicolor
versicolor
setosa
versicolor

R ORr KPR RL O
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In two dimensions, training the perceptron corresponds to looking for the line
that separates the points at best. (Remember, the decision surface of a linear
combination of inputs gives: € - X = constant, which in 2D is a line)

Petal Dimensions in Iris Blossoms

45
S
4.0 - S
s S
i S
’ S s 8.8 v
S \%
S S s v \%
3.0 S vV Vv \%
< vy VvV
3 v VV \
= ALY
25 v \%
S \% \%
2.0 \
15 -
S Setosa Petals
10

Length



Basically, we try different values for the weights moving towards the values
that minimize the misprediction of the training data: the red line.
(see Appendix for the algorithm)

Petal Dimensions in Iris Blossoms

Width

15 = —
Z E—<eoea Petals

V Versicolor Petals

Length



. . Logis gression
Expressiveness of single perceptrons Al Neurl Newwors
Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

The output is 1 when:

ZW;X,'J'>O or w-X;>0

1

Hence, it represents a linear separator in input space:
- line in 2 dimensions
- plane in 3 dimensions

- hyperplane in multidimensional space .
These points are not

x| X1 linearly separable
1 ® 1 ©)
?
0 0
0 | )
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5. Artificial Neural Networks

Multi-layer perceptrons
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M u Iti |aye r p erce pt rons Artificial Neural Networks

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units &
W;

Hidden units Y
W

Input units ay

(a for activation values; W for weight parameters)

65



M u Iti Iaye r FEEd— forward Artificial Neural Networks

Feed-forward network = a parametrized family of nonlinear functions:

as = g(wzs-as+ was - as)

=g(wss-g(wiz-air+woz-a)+ was-g(wisa-ar+was-a))

Adjusting weights changes the function: do learning this way!

66



Neural Network with two layers

Log egression
Artificial Neural Networks

What is the output of this two-layer network on the input a; = 1,2, =0
using step-functions as activation functions?

1

1

1.5

—

The input of the first node (node 3) is:

ZWBQ,':W13'81+W23'32:1~1+1~O:1

1

—» Output

which is < 1.5, hence the output of node 3 is a3 = g(>, wiza;) = 0.
The input to the second node (node 4) is:

ZWMQ,':W14-81+W34~a3+W24-324:1-1—2-O+1~0:1

1

which is > 0.5, hence the output of the node 4 is a3 = g(>_, wiza;) = 1.



EXpreSSiveneSS of M L PS Artificial Neural Networks

All continuous functions with 2 layers, all functions with 3 layers

hy, (%, %)
1

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units

68



A Practical Example

Sharp turn Sharp turn
to left Straight to right
oo oo \
Processing

units

30 by 32
image of
road

Mathematical C
Machine Lear
Linear R
Logistic Regression

Artificial Neural Networks

Deep learning =

convolutional neural networks =
multilayer neural network with
structure on the arcs

for example, one layer only for image
recognition, another for action
decision.

The image can be subdivided in
regions and each region linked only to
a subset of nodes of the first layer.

69
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Part |

Appendix
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Outline

6. Single Layer Perceptron Learning

7. Multilayer Perceptron Learning
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Outline

6. Single Layer Perceptron Learning
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Single Layer Perceptron Learning

Perceptron learning
Learn by adjusting weights to reduce error on training set.
The squared error for an example with input X and true output y is
1 S )2
L= E(y — h(w, X))",

Find local optima for the minimization of the function [(w) in the vector of
variables ¢ by gradient methods.

Note, the function L depends on constant values X that are the inputs to the
perceptron.

The function | depends on h which is non-convex, hence the optimization
problem cannot be solved just by solving VL(W) = 0
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Digression: Gradient methods

Gradient methods are iterative approaches:

e find a descent direction with respect to the objective function L
e move w in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Digression: Gradient methods

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess wy for the
minimum

2. Repeat:

3. Compute a descent direction p, = V(L(w;))

4. Choose o to minimize (o) = (W, — o) over o € R |

5.  Update w; 1 = wy —ap;, and t =t +1

6. Until |VL(w,)| < tolerance

Step 4 can be solved 'loosely’ by taking a fixed small enough value oo > 0
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Digression: Perceptron learning

In the specific case of the perceptron, the descent direction is computed by
the gradient:

R R N -
ae,L()_z'z'L()aW,L(‘))_L()aW,<yg<ZW’XU>>

i=0
= —L(0) - g'(in) - x;
and the weight update rule (perceptron learning rule) in step 5 becomes:

A o

Wii1,j = Wi+ Q- L(O) ~g’(in)x,-

e For threshold perceptron, g’(in) is undefined:
Original perceptron learning rule (Rosenblatt, 1957) simply omits g’(in)

e For sigmoid function can be calculated. See earlier.
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Outline

7. Multilayer Perceptron Learning
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Single Layer Perceptron Learning
Multilayer Perceptron Learning

Multilayer perceptron learning: Back-propagation

Feed-forward network = a parametrized family of nonlinear functions:
as = g(wss- a3+ wys - as)
=g(wss-g(wiz-ar+waz-a)+was-g(waa-ar+waa-a))

Adjusting weights changes the function: do learning this way!
80



Single Layer Perceptron Learning
Multilayer Perceptron Learning

Multilayer perceptron learning: Back-propagation

Output layer: same as for single-layer perceptron,
Wpj < Wpj + - ap - A\

where A; = [; - g’([,—).

—

Note: the general case has multiple output units hence: L = (y — h(w, ¢(x)))
Hidden layer: back-propagate the error from the output layer:

A; = g'(inj) Z wei A (sum over the multiple output units)
i

Update rule for weights in hidden layer:

Wkg(—Wk£+(Y-ak'A[.
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Single Layer Perceptron Learning
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Back-propagation derivation

The squared error on a single example j is defined as

> (i —ai)

i

L =

N| =

where the sum is over the nodes in the output layer.
Let's drop the index j for the sake of simplicity

oL daj dg(in;)
OW@‘ = 7()/1 - al)an,‘ 7 (.VI 31) 8W[,’

. Gin,-
=i - a,-)g’(m,-)aW[ = (i —a)g'(in) 5 (Z Wz,az>

= ~(yi —a))g'(inj)ar = —ar\;
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Back-propagation derivation contd.

For the hidden layer:

B 33, B in;)
8Wkg B Z 8Wk o Z(yl B

(9sz
din;
= — Z(y; —ag'( av"zl — Z aWke <zg: W/,Q[)
:_ZAWZI :—ZA/ élag In[

an

Ing

= —ZA Wyi 8 (|n4;)

= — Z A Wyi & Ing Wkg <zk: Wkgak)

= — E A Wyi 8 |n1; di — —akAg
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