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• set of real numbers: R

• the set R2 is the set of ordered pairs (x , y) of real numbers
(eg, coordinates of a point wrt a pair of axes, the Cartesian plane)

• the set Rn is the set of ordered tuples (x1, x2, . . . , xn) of real numbers
(Euclidean space)
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• A matrix is a rectangular array of numbers or symbols. It can be written
as 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


• An n × 1 matrix is a column vector, or simply a vector:

v =


v1
v2
...
vn


• the set Rn is the set of vectors [x1, x2, . . . , xn]T of real numbers (eg,
coordinates of a point wrt an n-dimensional space, the Euclidean Space)
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• For two vectors

v =


v1
v2
...
vn

 w =


w1
w2
...

wn


the scalar (or dot) product denoted v ·w, is the real number given by

v ·w = v1w1 + v2w2 + . . .+ vnwn
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• a function f on a set X into a set Y is a rule that assigns a unique
element f (x) in S to each element x in X .

y = f (x)

y dependent
variable

x independent
variable

• a linear function has only sums and scalar multiplications, that is, for
variable x ∈ R and scalars a, b ∈ R:

f (x) := ax + b
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• Quadratic equation

ax2 + bx + c = 0, a 6= 0.

• closed form or analytical solution:

x1 =
−b −

√
b2 − 4ac
2a

x2 =
−b +

√
b2 − 4ac
2a
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• A polynomial of degree n in x is an expression of the form:

Pn(x) = a0 + a1x + a2x2 + · · ·+ anxn,

where the ai are real constants, an 6= 0, and x is a real variable.

• Pn(x) = 0 has at most n solutions, eg:

x3 − 7x + 6 = (x − 1)(x − 2)(x + 3) = 0,

which are called roots or zeros of Pn(x)

• No general (closed) formula
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A line L through a point (x0, f (x0))
of f can be described by:

y = m(x − x0) + f (x0)

The derivative is the slope of the line
that is tangent to the curve:

y = f ′(x0)(x − x0) + f (x0)
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• A function f of n real variables is a rule that assigns a unique real
number f (x1, x2, . . . , xn) to each point (x1, x2, . . . , xn)

Example in R2:

f (x , y) =
√

102 − x2 − y2

x2 + y2 + z2 = 10
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• The first partial derivative of the function f (x , y) with respect to the
variables x and y are:

f1(x , y) = lim
h→0

f (x + h, y)− f (x , y)

h
=

∂

∂x
f (x , y)

f2(x , y) = lim
k→0

f (x , y + k)− f (x , y)

k
=

∂

∂y
f (x , y)

• Their value in a point (x0, y0) is given by:

f1(x0, y0) =

(
∂

∂x
f (x , y)

) ∣∣∣∣∣
(x0,y0)

f2(x0, y0) =

(
∂

∂y
f (x , y)

) ∣∣∣∣∣
(x0,y0)
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• Supervised learning
the agent is provided with a series of examples and then it generalizes from those examples to
develop an algorithm that applies to new cases.

Eg: learning to recognize a person’s handwriting or voice, learning to distinguish between junk

and welcome email, and learning how to identify a disease from a set of symptoms.

• Unsupervised learning
Correct responses are not provided, but instead the agent tries to identify similarities between the

inputs so that inputs that have something in common are categorised together.

• Reinforcement learning:
the agent is given a general rule to judge for itself when it has succeeded or failed at a task during
trial and error. The agent acts autonomously and it learns to improve its behavior over time.

Eg: learning how to play a game like backgammon (success or failure is easy to define)

• Evolutionary learning:
the agent adapts to improve its success and chance of having offspring in the environment.

Success assessed by fitness, which corresponds to a score for how good the current solution is.
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• inputs that influence outputs
inputs: independent variables, predictors, features
outputs: dependent variables, responses

• goal: predict value of outputs

• supervised: we provide data set with exact answers

• regression problem  variable to predict is continuous/quantitative

• classification problem  variable to predict is discrete/qualitative
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Given m points (pairs of numbers) (x1, y1), . . . , (xm, ym)

Task determine a function f (x) of a simple form such that

f (x1) ≈ y1, · · · , f (xm) ≈ ym.

The type of function: polynomials, exponential functions, logistic may be
suggested by the nature of the problem (the underlying physical law, the type
of response)

 Corresponds to fitting a model to the data
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• Regression
Given (~x1, y1), . . . , (~xm, ym) predict the response value ŷ for a new input
x as:

ŷ(~x) =
1
k

∑
~xi∈Nk (~x)

yi

ŷ(~x) is the average of the k closest points
It requires the definition of a distance metric, eg, Euclidean distance

1. Rank the data points (~x1, y1), . . . , (~xm, ym) in increasing order of
distance from ~x in the input space, ie, d(~xj ,~x) =

√∑
i (xij − xi )2.

2. Set the k best ranked points in Nk(~x).

3. Return the average of the y variables of the k data points in Nk(~x).
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• Classification
Given (~x1, y1), . . . , (~xm, ym) predict the class ŷ for a new input x as:

Ĝ (~x) = argmaxG∈G
∑

xi∈Nk (~x)|yi=G

1
k

corresponds to a majority rule.

1. Rank the data points (~x1, y1), . . . , (~xm, ym) in increasing order of
distance from ~x in the input space, ie, d(~xj ,~x) =

√∑
i (xij − xi )2.

2. Set the k best ranked points in Nk(~x).

3. Return the class that is most represented in the k data points of
Nk(~x).
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• The hypothesis set H is made by linear functions

• We search for the line y = ax + b that fits best the data:

• we measure the distance of the points (x1, y1), . . . , (xm, ym) from the
straight line by the vertical direction (the y -direction).

• we look for the line that minimizes the sum of the squares of the
distances from the points (x1, y1), . . . , (xm, ym)

• each point (xj , yj), j = 1..m with abscissa xj has the ordinate axj + b in
the fitted line. The distance from the actual data (xj , yj) is |yj − axj − b|

• the sum of square errors is

L̂ =
m∑

j=1

(yj − axj − b)2

• Hence, E depends on a and b, while the values xj and yj are given by
the data available.

24



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksPartial Derivative

• A necessary condition for E to be minimum is

∂

∂a
L̂ = −2

m∑
j=1

(yj − axj − b) = 0

∂

∂b
L̂ = −2

m∑
j=1

xj(yj − axj − b) = 0

• We can rewrite as:{
bm + a

∑
xj =

∑
yj

b
∑

xj + a
∑

x2
j =

∑
xjyj

which is a system of linear equations in the variables [a, b].

• The solution to this systems gives the values of a and b that minimize
the square distance. They can be calculated in closed form.
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Closed form solution:

a =

∑
(xj − x̄)(yj − ȳ)∑

(xj − x̄)2

b = ȳ − ax̄

where:

x̄ =
1
m

∑
xj

ȳ =
1
m

∑
yj
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Learning = Representation + Evaluation + Optimization

• Representation: formal language that the computer can handle.
Corresponds to choosing the set of functions that can be learned, ie. the
hypothesis space of the learner. How to represent the input, that is,
what features to use.

• Evaluation: an evaluation function (aka objective function or scoring
function)

• Optimization. a method to search among the learners in the language
for the highest-scoring one. Efficiency issues. Common for new learners
to start out using off-the-shelf optimizers, which are later replaced by
custom-designed ones.

28



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksOutline

1. Mathematical Concepts

2. Machine Learning

3. Linear Regression
Extensions

4. Logistic Regression

5. Artificial Neural Networks
Single-layer Networks
Multi-layer perceptrons

29



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksLinear Regression with Several Variables

30



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural Networks

Representation of hypothesis space:

h(x) = θ0 + θ1x linear function

if we know another feature:

h(x) = θ0 + θ1x1 + θ2x2 = h(~θ,~x)

for conciseness, defining x0 = 1

h(~θ, x) = ~θ · ~x =
2∑

i=0

θixi

Notation:

• p num. of features, ~θ vector of p + 1 parameters, θ0 is the bias

• xij is the value of feature i for sample j , for i = 1..p, j = 1..m

• yj is the value of the response for sample j
33
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Evaluation
loss function L(y , h(~x)) for penalizing errors in prediction.
Most common is squared error loss:

L(y , h(~θ,~x)) = (y − h(~θ,~x))2

this leads to minimize:

min
~θ

L(~θ)

Optimization

L̂(~θ) =

p∑
j=1

(
yj − h(~θ,~xj)

)2
cost function

min
~θ

L̂(~θ)
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Generalize the linear function y = a + bx to a polynomial of degree k

Representation

h(x) = p(~θ, x) = θ0 + θ1x + · · ·+ θkxk

where k ≤ m − 1.
 Each term acts like a different variable in the previous case.

~x =
[
1 x x2 . . . xn

]T
Evaluation Then L takes the form

L̂(~θ) =
m∑

j=1

(yj − p(~θ,~xj))2

this is a function of k + 1 parameters θ0, · · · , θk .
35
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Optimization
The necessary condition for L̂ to be minimum gives a system of k + 1 linear
equations:

∂

∂θ0
L̂(~θ) = 0

∂

∂θ1
L̂(~θ) = 0

...
∂

∂θm
L̂(~θ) = 0

For k = 3 we obtain (summations are all from 1 to m):
θ0m + θ1

∑
xj + θ2

∑
x2
j +θ3

∑
x3
j =

∑
yj

θ0
∑

xj + θ1
∑

x2
j + θ2

∑
x3
j +θ3

∑
x4
j =

∑
xjyj

θ0
∑

x2
j + θ1

∑
x3
j + θ2

∑
x4
j +θ3

∑
x5
j =

∑
x2
j yj

θ0
∑

x3
j + θ1

∑
x4
j + θ2

∑
x5
j +θ3

∑
x6
j =

∑
x3
j yj

which can be solved in closed form.
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Combining several variables with a fixed set of nonlinear functions known as
basis functions.

Representation

h(~θ,~x) = θ0 +
p∑

i=1
θixi +

p∑
i=1

p∑
k=1

θikxixk +
p∑

i=1

p∑
k=1

p∑̀
=1
θik`xixkx`

h(~θ,~x) = θ0 +
p∑

j=1
θjφj(x) = ~θ · ~φ(~x)

h is now a nonlinear function of input vector ~x but h is linear in ~θ
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Use different data for different tasks:

• Training and Test data: holdout cross validation

• If small data: k-fold cross validation

Avoid peeking:

• Weights learned on training data.

• Parameters and model compared on validation data

• Final assessment on test data
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L(~θ) =
1
2

[
h(~θ,~x)− y)

]2 on training data
on test data

E [L(~θ)] =
1
2

m∑
j=1

[
h(~θ~xj)− yj

]2
average loss

ERMS =

√
2E [L(~θ)]/m root mean square

41



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksOutline

1. Mathematical Concepts

2. Machine Learning

3. Linear Regression
Extensions

4. Logistic Regression

5. Artificial Neural Networks
Single-layer Networks
Multi-layer perceptrons

42

NO
T
FO
R
MC

TE
ST



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksClassification and Logistic Regression

Binary classification problem: y = {0, 1} or y = {−1, 1} (labels)
• We could use the linear regression algorithms that we saw and round.
• Or: we change our hypothesis:

h(~θ,~x) = g(~θ · ~x) g : R→ [0, 1], h : Rp → [0, 1].

In ML g(·) is called activation function

A common choice for g is the logistic function
or sigmoid function:

g(z) =
1

1 + e−z , hence

h(~θ,~x) =
1

1 + e−~θ·~x
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• Note that g is nonlinear in both the parameters and the inputs

• However, the decision surface corresponds to h(~x) = constant and hence
to a linear function of ~x :

~θ · ~x = g−1(constant) = constant

in one dimension (y , x1) it is a vertical line
in two dimensions (y , (x1, x2)) it is a line
in three dimensions (y , (x1, x2, x3)) it is a plane
in more dimensions (y , (x1, . . . , xp)) it is an hyperplane

• how do we determine ~θ? (see Appendix)
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Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Signals are noisy “spike trains” of electrical potential
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Activities within a processing unit
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 “The neural network” does not exist. There are different paradigms for
neural networks, how they are trained and where they are used.

• Artificial Neuron

• Each input is multiplied by a weighting factor.

• Output is 1 if sum of weighted inputs exceeds the threshold value;
0 otherwise.

• Network is programmed by adjusting weights using feedback from
examples.
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Output is a function of weighted inputs:

ai = g(ini ) = g

∑
j

wjiaj



Output

Σ
Input 
Links

Activation 
Function

Input 
Function

Output 
Links

a0 = −1 ai = g(ini)

ai

giniWj,i

W0,i

Bias Weight

aj

Changing the bias weight w0,j moves the threshold location

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Non linear activation functions

(a) (b) 

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function
(mostly used in theoretical studies)  perceptron

(b) is a continuous activation function, e.g., sigmoid function 1/(1 + e−x)
(mostly used in practical applications)  sigmoid neuron
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AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented by
combining this type of units
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Architecture: definition of number of nodes and interconnection structures
and activation functions σ but not weights.

• Feed-forward networks:
no cycles in the connection graph

• (no hidden layer)

• (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

• Recurrent networks:
connections between units form a directed cycle.
– internal state of the network
exhibit dynamic temporal behavior (memory, apriori knowledge)

– for associative memory
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Neural Networks are used in classification and regression

• Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

• k-way classification
- divide single output into k portions
- k separate output unit

• continuous output
- identity activation function in output unit
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Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

58



Mathematical Concepts
Machine Learning
Linear Regression
Logistic Regression
Artificial Neural NetworksNumerical Example

Boolean Classification
The (Fisher’s or Anderson’s) iris data set gives measurements in centimeters
of the variables: sepal length and petal length and petal width for 50 flowers
from 2 species of iris: Iris setosa, and versicolor.
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iris.data:

Sepal.Length Sepal.Width Species id
4.9 3.1 setosa 0
5.5 2.6 versicolor 1
5.4 3.0 versicolor 1
6.0 3.4 versicolor 1
5.2 3.4 setosa 0
5.8 2.7 versicolor 1

Two classes encoded as 0/1
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In two dimensions, training the perceptron corresponds to looking for the line
that separates the points at best. (Remember, the decision surface of a linear
combination of inputs gives: ~θ · ~x = constant, which in 2D is a line)
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Basically, we try different values for the weights moving towards the values
that minimize the misprediction of the training data: the red line.
(see Appendix for the algorithm)
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Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

i

wixij > 0 or ~w · ~xj > 0

Hence, it represents a linear separator in input space:
- line in 2 dimensions
- plane in 3 dimensions
- hyperplane in multidimensional space
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Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

(a for activation values; W for weight parameters)
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W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parametrized family of nonlinear functions:

a5 = g(w3,5 · a3 + w4,5 · a4)

= g(w3,5 · g(w1,3 · a1 + w2,3 · a2) + w4,5 · g(w1,4 · a1 + w2,4 · a2))

Adjusting weights changes the function: do learning this way!
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What is the output of this two-layer network on the input a1 = 1, a2 = 0
using step-functions as activation functions?

The input of the first node (node 3) is:∑
i

wi3ai = w13 · a1 + w23 · a2 = 1 · 1 + 1 · 0 = 1

which is < 1.5, hence the output of node 3 is a3 = g(
∑

i wi3ai ) = 0.
The input to the second node (node 4) is:∑

i

wi4ai = w14 · a1 + w34 · a3 + w24 · a24 = 1 · 1− 2 · 0 + 1 · 0 = 1

which is > 0.5, hence the output of the node 4 is a3 = g(
∑

i wi4ai ) = 1.
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All continuous functions with 2 layers, all functions with 3 layers

-4 -2 0 2 4x1
-4

-2
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2
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x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units
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Deep learning ≡
convolutional neural networks ≡
multilayer neural network with
structure on the arcs
for example, one layer only for image
recognition, another for action
decision.
The image can be subdivided in
regions and each region linked only to
a subset of nodes of the first layer.
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Outline

6. Single Layer Perceptron Learning

7. Multilayer Perceptron Learning
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Outline

6. Single Layer Perceptron Learning

7. Multilayer Perceptron Learning
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Perceptron learning

Learn by adjusting weights to reduce error on training set.

The squared error for an example with input ~x and true output y is

L =
1
2

(y − h(~w ,~x))2 ,

Find local optima for the minimization of the function L̂(~w) in the vector of
variables ~θ by gradient methods.

Note, the function L̂ depends on constant values ~x that are the inputs to the
perceptron.

The function L̂ depends on h which is non-convex, hence the optimization
problem cannot be solved just by solving ∇L̂(W) = 0
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Digression: Gradient methods
Gradient methods are iterative approaches:

• find a descent direction with respect to the objective function L̂
• move ~w in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.

75

NO
T
FO
R
MC

TE
ST



Single Layer Perceptron Learning
Multilayer Perceptron Learning

Digression: Gradient methods

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess ~w0 for the
minimum

2. Repeat:
3. Compute a descent direction pt = ∇(L̂(~wt))
4. Choose α to minimize f (α) = L̂(~wt − α~pt) over α ∈ R+

5. Update ~wt+1 = ~wt − α~pt , and t = t + 1
6. Until ‖∇L̂(~wt)‖ < tolerance

Step 4 can be solved ’loosely’ by taking a fixed small enough value α > 0
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Digression: Perceptron learning
In the specific case of the perceptron, the descent direction is computed by
the gradient:

∂

∂θi
L̂(~θ) =

1
2
· 2 · L̂(~θ)

∂

∂wi
L̂(~θ) = L̂(~θ)

∂

∂wi

(
y − g

( p∑
i=0

wixij

))
= −L̂(~θ) · g ′(in) · xi

and the weight update rule (perceptron learning rule) in step 5 becomes:

wt+1,i = wt,i + α · L̂(~θ) · g ′(in)xi

• For threshold perceptron, g ′(in) is undefined:
Original perceptron learning rule (Rosenblatt, 1957) simply omits g ′(in)

• For sigmoid function can be calculated. See earlier.
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Multilayer perceptron learning: Back-propagation

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parametrized family of nonlinear functions:

a5 = g(w3,5 · a3 + w4,5 · a4)

= g(w3,5 · g(w1,3 · a1 + w2,3 · a2) + w4,5 · g(w1,4 · a1 + w2,4 · a2))

Adjusting weights changes the function: do learning this way!
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Multilayer perceptron learning: Back-propagation

Output layer: same as for single-layer perceptron,

w`i ← w`i + α · a` ·∆i

where ∆i = L̂i · g ′(L̂i ).

Note: the general case has multiple output units hence: ~̂L = (y− h(~w , ~φ(~x)))

Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑

i

w`i∆i (sum over the multiple output units)

Update rule for weights in hidden layer:

wk` ← wk` + α · ak ·∆` .
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Back-propagation derivation

The squared error on a single example j is defined as

L̂ =
1
2

∑
i

(yij − aij)
2

where the sum is over the nodes in the output layer.
Let’s drop the index j for the sake of simplicity

∂L̂
∂w`i

= −(yi − ai )
∂ai

∂w`i
= −(yi − ai )

∂g(ini )

∂w`i

= −(yi − ai )g ′(ini )
∂ini

∂w`i
= −(yi − ai )g ′(ini )

∂

∂w`i

(∑
`

w`ia`

)
= −(yi − ai )g ′(ini )a` = −a`∆i
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Back-propagation derivation contd.
For the hidden layer:

∂L̂
∂wk`

= −
∑

i

(yi − ai )
∂ai

∂wk`
= −

∑
i

(yi − ai )
∂g(ini )

∂wk`

= −
∑

i

(yi − ai )g ′(ini )
∂ini

∂wk`
= −

∑
i

∆i
∂

∂wk`

(∑
`

w`ia`

)

= −
∑

i

∆iw`i
∂a`
∂wk`

= −
∑

i

∆iw`i
∂g(in`)
∂wk`

= −
∑

i

∆iw`ig ′(in`)
∂in`
∂wk`

= −
∑

i

∆iw`ig ′(in`)
∂

∂wk`

(∑
k

wk`ak

)
= −

∑
i

∆iw`ig ′(in`)ak = −ak∆`
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