DM534

Introduction to Computer Science
Lecture on Satisfiability

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

THE SAT PROBLEM

DM549: Propositional Variables

= Variable that can be either false or true
= Set P of propositional variables

= Example:
P={ABCDXY,Z X}, Xy Xy ...}

= A variable assignment is an assignment of the values false
and true to all variables in P
= Example:
X = true
Y = false
Z = true

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

DM549: Propositional Formulas

* Propositional formulas
= If Xin P, then X is a formula.

= If Fis a formula, then —F is a formula.

If F and G are formulas, then A A B is a formula.

If F and G are formulas, then A V B is a formula.

If F and G are formulas, then A = B is a formula.
= Example: (X =2 (Y A -2Z))

* Propositional variables or negated propositional variables are
called literals

* Example: X, -X

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Which formulas are satisfiable?

= X
- X

-« XA =X
- X A =X
- XV =X

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Satisfiability

* Variable assighmentV satisfies formulas as follows:
= V satisfies X in P iff V assigns X = true
= V satisfies —A iff V does not satisfy A
= V satisfies AA B iff V satisfies both A and B
= V satisfies AV B iff V satisfies at least one of A and B
= V satisfies A =» B iff V does not satisfy A orV satisfies B

= A propositional formula A is satisfiable iff
there is a variable assignmentV such thatV satisfies A.

= The Satisfiability Problem of Propositional Logic (SAT):
= Given a formula A, decide whether it is satisfiable.

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Modelling Problems by SAT

= propositional variables are basically bits
= model your problem by bits
* model the relation of the bits by a propositional formula

= solve the SAT problem to solve your problem

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

N-TOWERS & N-QUEENS

N-Towers & N-Queens

= N-Towers

* How to place N towers on an NxN chessboard such that

they do not attack each other?

* (Towers attack horizontally and vertically.) !

* N-Queens (restriction of N-Towers)

* How to place N queens on an NxN chessboard such that
they do not attack each other?

* (Queens attack like towers + diagonally.) 2

Q

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Modeling by Propositional Variables

Model NxN chessboard by NxN propositional variables X;;
= Semantics: X;; is true iff there is a figure at row i, column |

- Example: 4x4 chessboard XI,I XI,2 X|,3 X|,4

= Example solution:
" Xip T KXo T Xy T Xy 3 = true
= X;; = false for all other X;,

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Reducing the Problem to SAT

* Encode the properties of N-Towers to propositional formulas

= Example: 2-Towers
X2 —X, “Tower at (I,I) attacks to the right”
P Xy, “Tower at (l,I) attacks downwards” X Xia
2P =X “Tower at (1,2) attacks to the left”
” XZ,I X2,2

“Tower at (1,2) attacks downwards
“Tower at (2,1) attacks to the right”
“Tower at (2,1) attacks upwards”

2P X, “Tower at (2,2) attacks to the left”
Xy0 P =Xy, “Tower at (2,2) attacks upwards”
Xiiv X, “Tower in first row”
X0 v Xy “Tower in second row”

* Form a conjunction of all encoded properties:

(XI,I > _XI,Z) A (XI,I > _XZ,I) A (Xl,z > _X|,|) A (X|,2 > _Xz,z) A (XZ,I > _X|,|)
A (Xz,l > _Xz,z) A (Xz,z > _X|,2) A (Xz,z > _X2,I) A (XI,I \% XI,Z) A (Xz,l \% Xz,z)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Solving the Problem

= Determine satisfiability of
(X|,| > _X|,2) A (X|,| > _X2,|) A (Xl,z > _XI,I) A (Xl,z > _Xz,z) A (Xz,l > _X|,|)
A (Xz,l > _Xz,z) A (Xz,z > _XI,Z) A (Xz,z > _XZ,I) A (X|,| \% X|,2) A (Xz,l \% Xz,z)

= Satisfying variable assignment (others are possible):
= X =Xy, =true
= X, =X, = false

(true =» —false) A (true = —false) A (false = —true) A (false =» —true) A (false = —true) A
(false =» —true) A (true =» —false) A (true =» —false) A (true V false) A (false V true)

(true =» true) A (true = true) A (false =» —true) A (false = —true) A (false =» —true) A (false =
—true) A (true = true) A (true = true) A (true V false) A (false V true)

true A true A true A true A true A true A true A true A true A true

true

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

SAT Solving is Hard

= Given an assignment, it is easy to test whether it satisfies our
formula

= BUT: there are many possible assighments!
= for m variables, there are 2™ possible assignments ©®

= SAT problem is a prototypical hard problem (NP-complete)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

USING A SAT SOLVER

SAT Solvers

= SAT solver = program that determines satisfiability

* Plethora of SAT solvers available
* For the best, visit http://www.satcompetition.org/

= Different SAT solvers optimized for different problems

" In this course, we use the SAT solver lingeling
* Very good overall performance at SAT Competition 2016
= Parallelized version available: plingeling, treengeling

= Available from: http://fmv.jku.at/lingeling/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Conjunctive Normal Form (CNF)

= Nearly all SAT solvers require formulas in CNF
= CNF = conjunction of disjunctions of literals

= Example: 2-Towers
(X|,| > _X|,2) A (XI,I > _XZ,I) A (XI,Z > _X|,|) A (Xl,z > _Xz,z) A (XZ,I 2> _XI,I) A
(Xz,l > _Xz,z) A (Xz,z > _XI,Z) A (Xz,z > _XZ,I) A (X|,| \% Xl,z) A (X2,| \% Xz,z)

= Conversion easy: A =>» B convertedto —A V B
(_XI,I \ _X|,2) A (_X|,| \ _X2,|) A (_X|,2 \% _X|,|) A (_X|,2 \4 _Xz,z) A (_X2,| \ _X|,|)
A (_X2,| \4 _Xz,z) A (_Xz,z \% _X|,2) A (_Xz,z \% _XZ,I) A (XI,I \% Xl,z) A (XZ,I \% Xz,z)

* Write formulas in CNF as a list of clauses (= lists of literals)

= Example:

[[_X|,|’ _X|,2]’[_X|,|’ _X2,|]’[_X|,2’ _XI,I]’[_XI,Z’_XZ,Z]’[_XZ, | ’_X|,|]’[_X2, | ’_Xz,z]’[_xz,z’_x|,2]’
[_Xz,z’_xz, | LIX 1,1 X | ,2]’[X2, | ’Xz,z]]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Conversion to CNF

= Implications can be replaced by disjunction:
= A>B convertedto —A V B

= DeMorgan's rules specify how to move negation "inwards":
= (AAB=-AV-B
= (AVB=-AA-B

Double negations can be eliminated:
r _(_A) =A

= Conjunction can be distributed over disjunction:

-AVBAC=AVB ARV

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Variable Enumeration

SAT solvers expect variables to be identified with integers

Starting from | and up to the number of variables used
* Necessary to map modeling variables to integer!

= Example: 4x4 chessboard

= X; becomes 4%(i-1)+j

Ko Kig Xz Xy | 2 3 4
K Koa Koz Xos > 6 7 8
Xy, Xyp X33 Xig 9 10 Il 12
Xe1 Xey Xe3 Xeg 13 14 15 16

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

(Simplified) DIMACS Format

= Description of DIMACS format for CNF (BB: dimacs.pdf)

Simplified format (subset) implemented by most SAT solvers:
= http://www.satcompetition.org/20 | 6/format-benchmarks2016.html

= 2 types of lines for input

= Starting with “c ”: comment

= Starting with “p problem
= 3 types of lines for output

= Starting with “c comment

= Starting with “s solution

‘,

= Starting with “v variable assighment

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Input Format 1/2

= Comments
= Anything in a line starting with “c “ is ignored

= Example:

c This file contains a SAT encoding of the 4-queens problem!

c The board is represented by 4x4 variables:

c 1 2 3 4
C 5 6 7 8
c 9 10 11 12
c 13 14 15 16
c

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Input Format 2/2

* Problem

= Starts with“p cnf #variables #clauses”

* Then one clause per line where
" Variables are numbered from | to #variables
= Clauses/lines are terminated by 0
= Positive literals are just numbers
= Negative literals are negated numbers

= Example:

p cnf 16 80
-1 -2 0

-15 -16 O
1 2 3 40

13 14 15 16 O

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Output Format 1/2

= Comments
= just like for the input format

= Example:

c reading input file examples/4-queens.cnf

= Solution
= Starts with “s
* Then either “SATISFIABLE” or “UNSATISFIABLE”

= Example:
s SATISFIABLE

¢

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Output Format 2/2

* Variable assignment
= Starts with“v “

Then list of literals that are assigned to true
= “1” means variable | is assigned to true

= “~2” means variable 2 is assigned to false
* Terminated by “0”

= Example:
v-12-3-4-5-6-7829 -10-11 -12 -13 -14 15 -16 O

1 2 3 4 false true false false Q
5 6 7 8 false false false true Q
9 10 11 12 true false false false

13 14 15 16 false false true false Q

Q

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Running the SAT Solver

Save the comment and problem lines into .cnf file.

.

2. Invoke the SAT solver on this file.

3. Parse the standard output for the solution line.

4. If the solution is “SATISFIABLE”, find variable assignment.
= Example:

lingeling 4-queens.cnf

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

WRITING A SAT SOLVER

Brute-Force Solver

" iterate through all possible variable assignments
= for each assignment
= if the assighment satisfies the formula

= output SAT and the assignment

= if no assignment is found, output UNSAT

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Python Implementation

import itertools, sys

def parse dimacs(lines):
clauses = []
while lines:

line, lines = lines[0], lines[1l:]

if line[0] == "p":
num vars, num clauses = [int(x) for x in line.split()[2:]]
clauses = [[int(x) for x in line.split()[:-1]] for line in lines]

return num vars, [clause for clause in clauses if clause]

def output dimacs(num vars,d):
if d:
vars = [str(x) if d[x] else str(-x) for x in range(l,num vars+l)]
return "SATISFIABLE\ns "+" ".join(vars)
return "UNSATISFIABLE"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Python Implementation

def reduce clause(clause,d):

new clause = []
for literal in clause:
if not literal in d:
new clause.append(literal)
elif d[literal]:
return True

return new clause

def conflict(d,f):

for clause in f:

if not reduce clause(clause,d):
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Python Implementation

def solve(f,num vars):
for v in itertools.product([False,True],repeat=num vars):
d = {}
for i in range(num vars):
d[i+l] = v[i]

d[-i-1] = not Vv[1i]
if not conflict(d,f):
return d

return False

if name == " main_ ":
num vars, clauses = parse dimacs(open(sys.argv[l]).readlines())
result = solve(clauses,num vars)

print output dimacs(num vars,result)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:
= 216 = 65,536 assignments for 4-queens (| second)
= 22> = 33,554,432 assignments for 5-queens (7 minutes)
236 = 68,719,476,736 assignments for 6-queens (2 weeks)
2% = 5629499534213 12 assignments for 7-queens (400 years)

= 2% assignments for 8-queens (age of the universe)

= 28! assignments for 9-queens (ahem ... no!)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Fast Forwarding 60+ Years

* Incremental assignments

= Backtracking solver

* Pruning the search

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:
= 2190 assignments for 10-queens (1.77 seconds)
= 2121 assignments for | I-queens (1.29 seconds)
= 2!4* assignments for 12-queens (9.15 seconds)
= 2169 assignments for |3-queens (5.2 seconds)

= 2196 assignments for 14-queens (136.91 seconds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Fast Forwarding 60+ Years

* Incremental assignments
= Backtracking solver

* Pruning the search

= Backjumping

= Conflict-driven learning
= Restarts

* Forgetting

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Empirical Evaluation

* For n variables, there are 2" possible variable assignments

= Example:
= 226 assignments for |6-queens (0.02 seconds)

= 21024 3ssignments for 32-queens (0.10 seconds)

240% assignments for 64-queens (1.08 seconds)

216384 assignments for 128-queens (17.92 seconds)

263236 assignments for 256-queens (366.05 seconds)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Efficient SAT Solving

" in many cases, SAT problems can be solved efficiently
= state-of-the-art SAT solvers can be used as blackboxes
= success of SAT solvers based on

= relatively simple but highly-optimized algorithms

" innovative and very pragmatic data structures

= used extensively for scheduling, hardware and software
verification, mathematical proofs, ...

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Take Home Slide

= SAT Problem = satisfiability of propositional logic formulas
= SAT used to successfully model hard (combinatorial) problems
= solving the SAT problem is hard in the general case

= advanced SAT solvers work fine (most of the time)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

