
Secret Title

Fabrizio Montesi <fmontesi@imada.sdu.dk>

 University of Southern Denmark

Models of Computation,
Languages,

and Recursion

Fabrizio Montesi <fmontesi@imada.sdu.dk>

 University of Southern Denmark

Models of Computation

● Programming is essentially the precise formulation of
a method that a computer can run.

● Achieving such precision can be challenging if you
start from scratch.

● Researchers developed (and still develop) a toolbox
of models that you can use to formulate solutions.

Languages

● Algorithms are concretely defined using
programming languages.

● Programming languages work by recognising
whether programs are valid in their syntax, and then
executing their intended semantics (meaning).

● Languages in general represent a big field of study in
Computer Science and are largely applied in the
industry.

Recursion

● If a definition or a statement includes a
self-reference, we call it recursive.

● Example:
○ A sentence may be the connection of two

sentences.
○ An expression can be the sum of two expressions.

● Recursion is pervasive in math, CS, language, art, …

Examples of problems

Recall: a string is a sequence of characters (may contain
spaces).

● Given a string s, determine if it is a valid first name.
● Given a string s, determine if it is a valid e-mail

address.
● Given a string s, determine if it is a valid full name.

Deterministic Finite Automaton (DFA)
An informal introduction, with an example

A DFA consists of a finite set of states.

Example:

a b c

Deterministic Finite Automaton (DFA)
An informal introduction, with an example

One of these states is the start state.

Example (a is the start state):

a b c

Deterministic Finite Automaton (DFA)
An informal introduction, with an example

States are connected by transition arrows, which are
labelled with a character.
Example:

a b c
O

o

h

:space:

Deterministic Finite Automaton (DFA)
An informal introduction, with an example

Some states are accept states (denoted with a double
circle).
Example (c is an accept state):

a b c
O

o

h

:space:

Semantics of DFAs

What does a DFA do?
It recognises if a string is member of a language.

The idea is: take your string, and follow the
transitions of the DFA character by character. When you
reach the end of your string, check if you are in an
accept state. If you are, then the string is member of the
language.

Semantics of DFAs

Example:

Input: Hey

a b c
H e

d
y

Semantics of DFAs

Example:

Input: |Hey

a b c
H e

d
y

Semantics of DFAs

Example:

Input: |Hey

a b c
H e

d
y

Semantics of DFAs

Example:

Input: H|ey

a b c
H e

d
y

Semantics of DFAs

Example:

Input: H|ey

a b c
H e

d
y

Semantics of DFAs

Example:

Input: He|y

a b c
H e

d
y

Semantics of DFAs

Example:

Input: He|y

a b c
H e

d
y

Semantics of DFAs

Example:

Input: Hey|

a b c
H e

d
y

Semantics of DFAs

Example:

Input: Hey|
We reached the end of the string. We are in an accept
state. So the string is member of the language!

a b c
H e

d
y

Heey

Is Heey also accepted?
Why?

a b c
H e

d
y

Rejecting a string

No, Heey is not accepted.
Why?

a b c
H e

d
y

Rejecting a string

No, Heey is not accepted.
Why?

Because after we reach state c, we have no valid
transition to eat another letter e. So we do not reach the
end of the string.

a b c
H e

d
y

Rejecting a string

This string is also not accepted: He
Why?

a b c
H e

d
y

Rejecting a string

This string is also not accepted: He
Why?

Because when we reach the end of the string, we are not
in an accept state (we are in state c).

a b c
H e

d
y

DFAs are executable

● There exists an algorithm that, given any DFA A and
a string s, returns true if A recognises s and false
otherwise. It follows the same idea we studied.

● This means that we can just think in terms of DFAs.
Computers will be able to run any DFA we design!

● So let’s have some fun with the design of DFAs!

A DFA that accepts both He and Hey

a b
H e

d
y

c

The language of a DFA

The language of a DFA is the set of all strings that it
recognises.
For example, the language of this DFA is {He, Hey}

a b
H e

d
y

c

What’s the language of this DFA?

a b
H e

d
y

c

e
i

DFAs can have loops

This DFA has a loop:

What’s its language now?

a b c
H e

d
y

e

DFAs can have loops

This DFA has a loop:

What’s its language now?
All strings that start with He, followed by an arbitrary
number of e, and end with a y.

a b c
H e

d
y

e

DFAs can have loops

This DFA has a loop:

Examples of accepted strings:
Hey, Heey, Heeeeeey, Heeeeeeeeeeeeeeeey

a b c
H e

d
y

e

DFAs can have loops

This DFA has a loop:

How big is the language of this DFA?

a b c
H e

d
y

e

DFAs can have loops

This DFA has a loop:

How big is the language of this DFA?

It’s infinite! Because we can always build a string with
an extra e in the middle.

a b c
H e

d
y

e

DFAs can have infinite languages

This DFA has an infinite language:

Can the strings in the language also be infinite?

a b c
H e

d
y

e

DFAs can have infinite languages

This DFA has an infinite language:

Can the strings in the language also be infinite?
No! All accepted strings are finite. Recall that we need
to reach the end of the string to accept.

a b c
H e

d
y

e

Remember the D in DFA (D = Deterministic)

This is NOT a DFA:

Because we do not know which transition to follow
when we meet an H at state a.

a

bH

cH

Remember the D in DFA (D = Deterministic)

This is a DFA:

Because each transition from state a has a different
character.

a

bH

cO

a b

Useful Abbreviations

● Different characters may bring to the same state.
● Example:

● We abbreviate this as:

F

M

a b
F,M

Useful Abbreviations

● We will use :this notation: for character classes.
● Examples:

○ :UCLetter: is any uppercase letter.
○ :LCLetter: is any lowercase letter.
○ :space: is any space character.

a b
:UCLetter:

A DFA for recognising a first name

● Examples of accepted strings: Fabrizio, Joan, Kim,
Lene, Rolf.

:LCLetter:

:LCLetter:

c

Some models are truly great

● Useful models have useful properties.
● One of these properties for DFAs is concatenation.
● You can always concatenate two DFAs and obtain a

language that is still recognisable by a DFA.

Example of concatenation (plus a space)

● How can we recognise valid full names?
● Example: Homer Simpson

Example of concatenation (plus a space)

● How can we recognise valid full names?
● Example: Homer Simpson
● Idea: we can think of a full name as the concatenation

of multiple names, separated by spaces.

A DFA for Full Names, attempt 1

a b
:UCLetter: :LCLetter:

:LCLetter:

c

A DFA for Full Names, attempt 1

a b
:UCLetter: :LCLetter:

:LCLetter:

c

a b
:UCLetter: :LCLetter:

:LCLetter:

c

A DFA for Full Names, attempt 1

a b
:UCLetter: :LCLetter:

:LCLetter:

c

d e
:UCLetter: :LCLetter:

:LCLetter:

f

:space:

A DFA for Full Names, attempt 2

a b
:UCLetter: :LCLetter:

:LCLetter:

c

d e
:UCLetter: :LCLetter:

:LCLetter:

f

:space:

d e
:UCLetter: :LCLetter:

:LCLetter:

f

:space:

Problems, problems…

Does that DFA recognise Charles John Huffam
Dickens?

Problems, problems…

Does that DFA recognise Charles John Huffam
Dickens?

No.

A DFA for Full Names, The Recursive Attempt

a b
:UCLetter: :LCLetter:

:LCLetter:

c

A DFA for Full Names, The Recursive Attempt

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

A DFA for Full Names, The Recursive Attempt

Great!!!

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

A DFA for Full Names, The Recursive Attempt

Great!!!
Oh no...

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

A DFA for Full Names, The Recursive Attempt

Great!!!
Oh no… What about Anne Elizabeth Alice Louise
Mountbatten-Windsor?

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

https://en.wikipedia.org/wiki/Mountbatten-Windsor
https://en.wikipedia.org/wiki/Mountbatten-Windsor
https://en.wikipedia.org/wiki/Mountbatten-Windsor

A DFA for Full Names, The Recursive Attempt

Great!!!
Oh no… What about Anne Elizabeth Alice Louise
Mountbatten-Windsor?

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:, -

https://en.wikipedia.org/wiki/Mountbatten-Windsor
https://en.wikipedia.org/wiki/Mountbatten-Windsor
https://en.wikipedia.org/wiki/Mountbatten-Windsor

A DFA for Full Names, The Recursive Attempt

Phew!

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:, -

A DFA for Full Names, The Recursive Attempt

Phew!

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:, -

Let’s take a step back

A step back: What have we seen?

● DFA: a powerful model for recognising if a string is
in a language.

● Simple execution: follow the arrows, reach the end of
the string, check if in accept state.

● Looks like we can recognise a lot of things.

A step back: What have we seen?

● DFA: a powerful model for recognising if a string is
in a language.

● Simple execution: follow the arrows, reach the end of
the string, check if in accept state.

● Looks like we can recognise a lot of things.
● Cool!

A step back: What have we seen?

● DFA: a powerful model for recognising if a string is
in a language.

● Simple execution: follow the arrows, reach the end of
the string, check if in accept state.

● Looks like we can recognise a lot of things.
● Cool!
● But a (computer) scientist should ask:

○ “A lot of things”? Which things, exactly?

The science of DFAs

● Q: What kind of strings can I recognise with a DFA?

The science of DFAs

● Q: What kind of strings can I recognise with a DFA?
● How do we answer?..

The science of DFAs

● Q: What kind of strings can I recognise with a DFA?
● How do we answer?..
● We need to understand the limitations of DFAs.

The science of DFAs

● Q: What kind of strings can I recognise with a DFA?
● How do we answer?..
● We need to understand the limitations of DFAs.
● So another interesting question is:

○ Q: What cannot I possibly recognise with a
DFA?

The science of DFAs

● Q: What kind of strings can I recognise with a DFA?
● How do we answer?..
● We need to understand the limitations of DFAs.
● So another interesting question is:

○ Q: What cannot I possibly recognise with a
DFA?

● Which is way more fun. Breaking stuff is the best
part of being a scientist.

An experiment to test DFAs

● Let us design an experiment to test what DFAs can
do.

● We take some 1st year students and a lecturer in CS.
● We try to come up with a DFA that recognises a

language I will propose.
● Maybe we will succeed, maybe we will fail.
● What happens if we fail?

An experiment to test DFAs

● Let us design an experiment to test what DFAs can
do.

● We take some 1st year students and a lecturer in CS.
● We try to come up with a DFA that recognises a

language I will propose.
● Maybe we will succeed, maybe we will fail.
● If we fail, we will blame the entire model of DFAs.

(In the real world, you should prove it, with math.
That’s what you’ll do in DM553.)

An experiment to test DFAs

● Let us design an experiment to test what DFAs can
do.

● We take some 1st year students and a lecturer in CS.
● We try to come up with a DFA that recognises a

language I will propose.
● Maybe we will succeed, maybe we will fail.
● If we fail, we will blame the entire model of DFAs.

(In the real world, you should prove it, with math.
That’s what you’ll do in DM553.)

The language of balanced parentheses

● Recognising arithmetic expressions is useful, e.g.,
(3+2)*4, (4*7)+(4/(3-1)), etc.

● In this language (and many others!), parentheses have
to be balanced.

● So a simpler, yet still interesting, problem is that of
recognising strings with balanced parentheses.

The language of balanced parentheses

● Some correct strings: (), (()), ((())), ()()(), ()(()),
(())((()()())).

● Some incorrect strings: (,), ((), ()), (()(), (())),))((
● Intuitively, a string is in the language if each left

parenthesis has a matching right parenthesis and the
matched pairs are well nested.

The language of balanced parentheses

● Some correct strings: (), (()), ((())), ()()(), ()(()),
(())((()()())).

● Some incorrect strings: (,), ((), ()), (()(), (())),))((
● Intuitively, a string is in the language if each left

parenthesis has a matching right parenthesis and the
matched pairs are well nested.

● OK, let’s try to come up with a DFA that recognises
this.

The language of balanced parentheses

● There is no DFA for balanced parentheses.
● Why?
● We need to remember how many open parentheses

we have, and this number has no bound. (We cannot
predict how many there can be.)

● Since a DFA has a finite number of states, there are
always cases where we do not have enough memory.

Context-Free Grammar (CFG)

● Another model for recognising strings.

Context-Free Grammar (CFG)
An informal introduction, with an example

● A CFG has a set of rules (also called rewrite rules, or
productions) that look like those below.

S → Hello T
S → Hey T
T → there

Context-Free Grammar (CFG)
An informal introduction, with an example

● The capital letters that appear on the left are called
non-terminal characters (non-terminals for short).

● S is the start non-terminal.
S → Hello T
S → Hey T
T → there

Context-Free Grammar (CFG)
An informal introduction, with an example

● All other characters are called terminals, which make
up for the actual content of strings that the CFG can
recognise.

S → Hello T
S → Hey T
T → there

Context-Free Grammar (CFG)
Semantics

● The idea is: Start from any of the rules for S. Then
you “apply” (example coming) that rule to “expand”
S. Go on applying rules to expand the non-terminals
until what you obtain is exactly the input string.

● The chain of applications that you obtain is called a
derivation.

Example of CFG

Input string: Hey there
S → Hello T
S → Hey T
T → there

Example of CFG

Input string: Hey there

S

S → Hello T
S → Hey T
T → there

Example of CFG

Input string: Hey there

S → Hey T

By the 2nd rule.

S → Hello T
S → Hey T
T → there

Example of CFG

Input string: Hey there

S → Hey T → Hey there

By the 3rd rule.

S → Hello T
S → Hey T
T → there

Example of CFG

Input string: Hey there

S → Hey T → Hey there

Starting from S, we reached exactly the input string, so
the string is accepted.

S → Hello T
S → Hey T
T → there

The language of a CFG

The language of a CFG is the set of all strings that can
be derived by that CFG (starting from S).

The language of this CFG

is {Hello there, Hey there}.

S → Hello T
S → Hey T
T → there

Another CFG

What does it recognise?
Recall:
● :UCLetter: is any uppercase letter
● :LCLetter: is any lowercase letter

S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

Another CFG

How do we transform it to a CFG that accepts full
names, like our previous DFA?

S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

Another CFG

What is this?

S → :UCLetter:L S
S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

Another CFG

What is this? Recursion!

S → :UCLetter:L S
S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

Another CFG

It’s exactly the same kind of recursion.

S → :UCLetter:L S
S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

Another CFG

It’s exactly the same kind of recursion.
But CFGs can do more...

S → :UCLetter:L S
S → :UCLetter:L
L → :LCLetter:L
L → :LCLetter:

a b
:UCLetter: :LCLetter:

:LCLetter:

c

:space:

Balanced parentheses

S → (S)
S → SS
S → ()

Balanced parentheses

Some derivations:
● S → ()
● S → (S) → (())
● S → SS → ()S → ()(S) → ()(SS) → ()(()S) → ()(()())

S → (S)
S → SS
S → ()

Balanced parentheses

S → (S)
S → SS
S → ()

● Some correct strings: (), (()), ((())), ()()(), ()(()),
(())((()()())).

● Some incorrect strings: (,), ((), ()), (()(), (())),))((

Balanced parentheses
S → (S)
S → SS
S → ()

● Why can we do balanced parentheses with a CFG and not
with a DFA?

● Because the kind of recursion that we have in CFGs is
more powerful: it has a memory!

● Specifically, when you “expand” a non-terminal, we
remember what to do after we are done expanding.

Balanced parentheses

Some derivations:
● S → ()
● S → (S) → (())
● S → SS → ()S → ()(S) → ()(SS) → ()(()S) → ()(()())

S → (S)
S → SS
S → ()

Balanced parentheses

S → (S)
S → SS
S → ()

a b
()

c

(

Balanced parentheses

S → (S)
S → SS
S → ()

a b
()

c

(
?? (

a b
The End

c

a b
The End

c

Wait a moment...

a b
The End

c

Wait a moment... is that a DFA?

a b
The End

c

Wait a moment... is that a DFA?
No, because transitions are labelled with single characters, not
strings! (See many slides back.)
Don’t take these things too lightly, they can be tricky.

a b
T

c
h

d
e

e f
e

g
n

h
d

:space:

Questions?

