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Ski Rental – a simplest online problem

A highly skilled, successful computer scientist is rewarded a ski vacation until
her company desperately needs her again, at which point she is called home
immediately, being notified when she wakes up in the morning.

At the ski resort, skis cost 10 units in the local currency.

One can rent skis for 1 unit per day.

Of course, if she buys, she doesn’t have to rent anymore.

Which algorithm does she employ to minimize her spending?

What is a good algorithm?

How do we measure if it’s a good algorithm?
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Competitive Analysis

Competitive analysis is one way to measure the quality of an online algorithm.

Idea:

Let Opt denote an optimal offline algorithm.

“Offline” means getting the entire input before having to compute.

This corresponds to knowing the future!

We calculate how well we perform compared to Opt.

Notation:

Alg(I ) denote the result of running an algorithm Alg on the input sequence I .

Thus, Opt(I ) is the result of running Opt on I .
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Competitive Analysis

∀I
Alg(I )
Opt(I ) ≤ c

An algorithm, Alg, is c-competitive if

∀I :
Alg(I )

Opt(I )
≤ c .

Alg has competitive ratio c if

c is the best (smallest) c for which Alg is c-competitive.

Technically, the definition of being c-competitive is that ∃b ∀I : Alg(I ) ≤ c Opt(I ) + b, but the additive term, b, does not become relevant for what
we consider. Also not relevant today, a best c does not necessarily exist, so the competitive ratio is inf {c | Alg is c-competitive}.
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Ski Rental – a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence decision

it’s a new day

rent

it’s a new day rent
...

...

it’s a new day rent

it’s a new day buy

it’s a new day do nothing

it’s a new day do nothing
...

...

come home go home
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Ski Rental – a simplest online problem

So all reasonable algorithms are of the form Buy on day X (or never buy).

Reminder: It costs 10 to buy skis.

We choose the algorithm: Buy on day 10.

The optimal offline algorithm, Opt:
d = the day we are called home
if d < 10:

rent every day
else: # d ≥ 10

buy on day 1

If we are called home before day 10, we are optimal!

Our cost: d < 10.
Opt’s cost: d .

In the worst case, we are called home (any time) after day 10:

Our cost: 9 + 10.
Opt’s cost: 10.

Result: we perform at most 19
10 < 2 times worse than Opt.
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Competitive Analysis

In general, we want to define good algorithms for online problems and prove that
they are good.

The ratio ( 19
10 ) from ski rental is a guarantee:

That algorithm never performs worse than 19
10 times Opt.

Is our algorithm 19
10 -competitive? Yes

Is our algorithm also 2-competitive? Yes

Is our algorithm also 42-competitive? Yes

Is our algorithm 1.5-competitive? No

Does our algorithm have competitive ratio 19
10 ? Yes

Does our algorithm have competitive ratio 2? No

Does our algorithm have competitive ratio 1.5? No
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Online Problems

So, what characterizes an online problem?

Input arrives one request at a time.

For each request, we have to make an irrevocable decision.

We want to minimize cost.

Sometimes we want to maximize a profit instead of minimizing a cost and there are some technicalities in adjusting definitions to accommodate that
possibility.
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Machine Scheduling

m ≥ 1 machines.

n jobs of varying sizes arriving one at a time to be assigned to a machine.

The goal is to minimize makespan, i.e., finish all jobs as early as possible.

Algorithm List Scheduling (Ls): place next job on the least loaded machine.
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Machine Scheduling – List Scheduling example
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Machine Scheduling – List Scheduling example

On some sequences, 10 is a good result.

On some sequences, 1.000.000 is a good result.

Sometimes 1000 is a bad result.

It depends on what is possible, i.e., how large or “difficult” the input is.
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Competitive Analysis – why Opt?

Opt is not an online algorithm.

However, it is a natural reference point:

Our online algorithms cannot perform better than Opt.

As input sequences I get harder, Opt(I ) typically grows, so a comparison to
Opt remains somewhat reasonable.

Formally:

For any Alg and any I ,
Alg(I )

Opt(I )
≥ 1.

We want to design algorithms with smallest possible competitive ratio.
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Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1

1 1 1
1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1

1 1
1 1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1

1 1
1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1

1
1 1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1

1
1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1

1 1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1

1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1

1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1

1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1

1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1

1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1

1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1

1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1

1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1

1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1

1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1

1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1

1 1 1
4m

7
4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1

1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1

1 1
4m

7
4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1

1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1

1
4m

7
4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
4

4m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

4m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

4m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4

m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

4

m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

4

m
7

4

(m − 1)m

m − 1

m

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4

m

M1 M2 M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

4

m

M1 M2 M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

4

m

7
4

(m − 1)m

m − 1

m

m

Thus,
Alg(I )

Opt(I )
=

7

4
= 2− 1

4

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling – Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

44

m

M1 M2

M3 M4

. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

4

m

M1 M2

M3 M4

. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

4

m

7
4

(m − 1)m

m − 1

m

m

In general,
Alg(I )

Opt(I )
≥ (m − 1) + m

m
=

2m − 1

m
= 2− 1

m

Kim Skak Larsen (IMADA) DM534 topic: Online Algorithms November 17, 2016 14 / 23



Machine Scheduling - proof techniques

You have just seen a

lower bound proof

In our context, that is relatively easy: Just demonstrate an example (family of
examples), where the algorithm performs worse than some ratio.

Now we want to show the much harder

upper bound proof

We must show that it is never worse than a given ratio for any of the (potentially
infinitely many) possible input sequences.
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Machine Scheduling – Ls is (2− 1
m)-competitive

1 2 m

V

t

`

Ls

t ends at the makespan and start at `

tmax is the length of the longest job

T is the total length of all jobs

Opt ≥ T/m

Opt ≥ tmax

V = ` ·m
T ≥ V + t, due to Ls’s choice for t

Ls = ` + t

≤ T−t
m + t, since ` = V

m and V ≤ T − t

= T
m + (1− 1

m )t

≤ T
m + (1− 1

m )tmax

≤ Opt+(1− 1
m )Opt, from Opt inequalities above

= (2− 1
m )Opt
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Machine Scheduling

Since we have both an upper and lower bound, we have shown the following:

Theorem
The algorithm Ls for minimizing makespan in machine scheduling with m ≥ 1
machines has competitive ratio 2− 1

m .
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Bin Packing

Unbounded supply of bins of size 1.

n items, each of size strictly between zero and one, to be placed in a bin.

Obviously, the items placed in any given bin cannot be larger than 1 in total.

The goal is to minimize the number of bins used.

Algorithm First-Fit (Ff): place next item in the first bin with enough space.
The ordering of the bins is determined by the first time they receive an item.
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Bin Packing – Ff example
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Bin Packing – simple lower bound against Ff
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Bin Packing – First-Fit

Ff has been shown to be 1.7-competitive [hard].
Thus, the competitive ratio is at most 1.7.

We have just shown that the competitive ratio is at least 1.5.

So, the competitive ratio of Ff is in the interval [1.5, 1.7].

We’ll approach the precise value in the exercises.
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How To Learn More

You’ll meet online algorithms in courses, without necessarily being told that they
are online problems.
A formal treatment of this topic is somewhat abstract and heavy on proofs, and
more appropriate for the MS level. At that point, you can take the course

DM860: Online Algorithms

or read
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IMADA People in Online Algorithms

Online Algorithms

Joan Boyar
Online algorithms, combinatorial
optimization, cryptology, data structures,
computational complexity

Lene Monrad Favrholdt Online algorithms, graph algorithms

Kim Skak Larsen
Online algorithms, algorithms and data
structures, database systems, semantics

Christian Kudahl Online algorithms

Jesper With Mikkelsen Online algorithms
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