
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

October 12, 2016
Marco Chiarandini

DM534 - Introduction to Computer Science

Lecture Notes on Machine Learning, Autumn 2016

The overall goal in the form of machine learning called supervised learning is to train a model to best fit a set
of training data made of some input variables (features) and a response. The hope is then that such a model
applied to a new unseen input will be able to predict well the corresponding response. Here, we look at two
types of such models: linear regression and neural networks.

1 Linear Regression
(Based on slides 22-38.)
Consider an event y ∈ Y that we assume depends on a variable x ∈ X . For example, let y be final grade of a
student in an exam and x the number of hours the student devoted to the study of the subject.

A learning model on a set of training samples (x1, y1), . . . , (xm, ym) seeks a goal function g : X → Y that best
approximates an unknown function f from which the training set is assumed to have been generated. In linear
regression the set of candidate functions H, from which g has to be selected, is represented by all functions h of
the form ha,b(x) := ax+ b. Hence, the form of g is fixed while the parameters a and b can be adjusted to find
a function from the family H that for any input x well approximate the response y. (Note that we could write
ax+ b also as ~θ ·~x where ~θ is the vector

[
a b

]
and ~x is the vector

[
x 1

]
. This notation simplifies considerably

the formulas in more advanced models.)

The most common way to evaluate a function h ∈ H on any data point (x, y) is the squared error loss:

L(y, ha,b(x)) = (y − ha,b(x))2.

Here, we considered (x, y) as variables to write a general model that is valid both for data already observed
belonging to the training set and for data not yet observed like those we might be using for the final assessment
of the model. On the given set of data we can evaluate h with any parameters a and b by calculating the total
error:

L̂a,b =

m∑
j=1

L(yj , ha,b(xj)) =

m∑
j=1

(yj − ha,b(xj))2.

(Note that we used here the hat symbol as common in machine learning but this has nothing to do with the
symbol you might have seen in the gymnasium for tvær vektor.)

To find the function g ∈ H that optimizes, here minimizes, L̂a,b corresponds to find the values of the parameters
a and b for which L̂a,b is minimum. We could proceed by trial and error. However, in this case we can use
calculus and the theory of partial derivatives to find that the values of a and b that minimize L̂a,b can be
expressed in closed form. They are given on slide 26. We do not need to remember those formulas as any
software, including several Python modules, have them already implemented in their methods.

The linear model above can be enhanced by including:

• several input variables (features) (x1, x2, . . . , xp)

• higher degree terms to represent polynomial functions

• basis functions.

Several input variables Let p be the number of features, ~θ a vector of p+ 1 parameters, where θ0 is called
the bias. Let xij be the value of feature i for sample j, for i = 1..p, j = 1..m. Finally, let yj be the value of the
response for sample j = 1..m.
Representation of hypothesis space H:

h(x) = θ0 + θ1x1 + θ2x2 = h~θ(x1, x2)

1



DM534 – Fall 2016 Assignment Sheet

For conciseness, defining x0 = 1 and ~x =
[
x0 x1 x2

]
:

h~θ(~x) =
~θ · ~x =

2∑
i=0

θixi

The evaluation is again done with the loss function

L(y, h~θ(~x)) = (y − h~θ(~x))
2

The optimization stage seeks the parameters ~θ that minimize:

L̂~θ =

p∑
j=1

(
yj − h~θ(~xj)

)2
or equivalently:

min
~θ
L̂~θ

Since this function is linear in ~θ a closed form solution exists. It requires notions from linear algebra, hence we
do not write it here.

Higher degree polynomial functions Representation of hypothesis space H:

h~θ(x) = p(~θ, ~x) = θ0 + θ1x+ · · ·+ θkx
k

where k ≤ m− 1. Each term acts like a different variable in the previous case.

~x =
[
1 x x2 . . . xk

]T
Evaluation: L̂ takes the form:

L̂(~θ) =

m∑
j=1

(yj − p(~θ, ~xj))2

which is a function of k + 1 parameters θ0, · · · , θk.
Optimization: Since the function is again linear in ~θ the values of the optimal parameters can also be expressed
in closed form.

Basis Functions
Basis functions combine several variables with a fixed set of nonlinear functions.
Representation:

h~θ(~x) = θ0 +

p∑
i=1

θixi +

p∑
i=1

p∑
k=1

θikxixk +

p∑
i=1

p∑
k=1

p∑
`=1

θik`xixkx`

h~θ(~x) = θ0 +

p∑
j=1

θjφj(x) = ~θ · ~φ(~x)

Each function h is now a nonlinear function of the input vector ~x but h is linear in ~θ. Hence, the loss function
is again solvable in closed form.

2 Artificial Neuron Models: Perceptron and Sigmoid Neurons
(Based on slides 49-53.)

2.1 Perceptrons
A perceptron is a type of artificial neuron. It takes several binary inputs, x1, x2, . . . and produces a single binary
output.
In the example shown in Figure 1 the perceptron has four inputs, x1, x2, x3, x4. In general it could have more
or fewer inputs. In the 1950s and 1960s Warren McCulloch and Walter Pitts and later Frank Rosenblatt
proposed a simple rule to compute the output. They introduced weights, w1, w2, . . ., real numbers expressing
the importance of the respective inputs to the output. The neuron’s output, 0 or 1, is determined by whether

2



DM534 – Fall 2016 Assignment Sheet

Input #1

Input #2

Input #3

Input #4

Output

Figure 1: A Perceptron.

the weighted sum
∑
j wjxj is less than or greater than some threshold value. Just like the weights, the threshold

is a real number which is a parameter of the neuron. To put it in more precise algebraic terms:

output :=

{
0 if

∑
j wjxj ≤ threshold

1 if
∑
j wjxj > threshold

(1)

We can simplify the way we describe perceptrons. The condition
∑
j wjxj > threshold is cumbersome, and

we can make two notational changes to simplify it. The first change is to write
∑
j wjxj as a dot product,

~w · ~x =
∑
j wjxj , where ~w and ~x are vectors whose components are the weights and inputs, respectively. The

second change is to move the threshold to the other side of the inequality, and to replace it by what’s known
as the perceptron’s bias, b = −threshold. Using the bias instead of the threshold, the perceptron rule can be
rewritten:

output :=

{
0 if ~w · ~x ≤ 0

1 if ~w · ~x > 0
(2)

You can think of the bias as a measure of how easy it is to get the perceptron to output a 1. Or to put it in
more biological terms, the bias is a measure of how easy it is to get the perceptron to fire. For a perceptron
with a really big bias, it’s extremely easy for the perceptron to output a 1. But if the bias is very negative, then
it’s difficult for the perceptron to output a 1. Obviously, introducing the bias is only a small change in how we
describe perceptrons, but it simplifies more advanced theory on neural networks and it is therefore preferred to
the use of a threshold.
The perceptron recalled above is only one type of artificial neuron. In class, we discussed also the sigmoid (or
logistic) neuron. Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights
and bias cause only a small change in their output. That’s a crucial fact to allow a network of sigmoid neurons
to learn.

2.2 Sigmoid Neurons
Sigmoid neurons can be depicted in the same way we depicted perceptrons in Figure 1.
Just like a perceptron, the sigmoid neuron has inputs, a1, a2, . . .. But instead of being just 0 or 1, these inputs
can also take on any values between 0 and 1. So, for instance, 0.638, . . . is a valid input for a sigmoid neuron.
Also just like a perceptron, the sigmoid neuron has weights for each input, w1, w2, . . . and an overall bias, b.
But the output is not 0 or 1. Instead, it’s σ(~w · ~x+ b), where σ is called the sigmoid or logistic function, and is
defined by:

σ(z) :=
1

1 + e−z

To put it all a little more explicitly, the output of a sigmoid neuron with inputs x1, x2, . . . weights w1, w2, . . .
and bias b is

1

1 + exp(−
∑
j wjxj − b)

To understand the similarity to the perceptron model, suppose z := ~w · ~x+ b is a large positive number. Then
e−z ≈ 0 and so σ(z) ≈ 1. In other words, when z := ~w · ~x + b is large and positive, the output from the
sigmoid neuron is approximately 1, just as it would have been for a perceptron. Suppose on the other hand
that z := ~w · ~x + b is very negative. Then e−z = ∞, and σ(z) ≈ 0. So when z := ~w · ~x + b is very negative,
the behaviour of a sigmoid neuron also closely approximates a perceptron. It’s only when z := ~w · ~x + b is of
modest size that there’s much deviation from the perceptron model.

How should we interpret the output from a sigmoid neuron? Obviously, one big difference between perceptrons
and sigmoid neurons is that sigmoid neurons don’t just output 0 or 1. They can have as output any real

3



DM534 – Fall 2016 Assignment Sheet

Figure 2: The graph of a sigmoid function, left, and of a step function, right.

number between 0 and 1, so values such as 0.173 . . . and 0.689, . . . are legitimate outputs. This can be useful,
for example, if we want to use the output value to represent the average intensity of the pixels in an image
input to a neural network. But sometimes it can be a nuisance. Suppose we want the output from the network
to indicate either "the input image is a 9" or "the input image is not a 9". Obviously, it’d be easiest to do this
if the output was a 00 or a 11, as in a perceptron. But in practice we can set up a convention to deal with this,
for example, by deciding to interpret any output of at least 0.50.5 as indicating a "9", and any output less than
0.50.5 as indicating "not a 9".

What about the algebraic form of σ? How can we understand that? In fact, the exact form of σ isn’t so
important – what really matters is the shape of the function when plotted. The shape is shown in Figure 2 left.
This shape is a smoothed out version of a step function shown in Figure 2, right.
If σ had in fact been a step function, then the sigmoid neuron would be a perceptron, since the output would
be 1 or 0 depending on whether ~w ·~x was positive or negative. By using the actual σ function we get, as already
implied above, a smoothed out perceptron. Indeed, it’s the smoothness of the σ function that is the crucial
fact, not its detailed form.

In a binary classification task, the single neuron implements a linear separator in the space of the input variables.
Indeed, for a perceptron the decision boundary is∑

j

wjxj = threshold

That is, if the left hand side of the equation above is less or equal than the threshold then the neuron outputs
0, otherwise it outputs 1.
In the case of two inputs, x1 and x2, this becomes:

w1x2 + w2x2 = threshold,

which corresponds to the equation of a line in the Cartesian plane:

x2 = −w1

w2
x1 +

1

w2
threshold

(you might have seen this with y in place of x2 and x in place of x1.) In 3 dimensions the equation:

w1x2 + w2x2 + w3x3 = constant

represents a plane. In more dimensions the equation represents what is called an hyperplane. In all cases, the
equation remains linear in ~x and therefore it is called linear separator.
A sigmoid neuron uses most commonly the value 0.5 as the discriminant for outputting 1 or 0. Then the decision
boundary becomes:

1

1 + exp(−
∑
j wjxj − b)

= 0.5

Solving in ~x we obtain an equation of the form:∑
j

wjxj = constant− b

which therefore is also a linear separator in the same way as for the perceptron.

References The part on the neural networks is largely based on: Michael A. Nielsen, “Neural Networks and
Deep Learning”, Determination Press, 2015. http://neuralnetworksanddeeplearning.com/chap1.html

4


