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Graph	Theory	- Motivation
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Social	Networks

This	graph	might	depict	Facebook	friendship	 relations,	or	Twitter	follower	 relations,	or…
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Chemical	Compounds

Isomers	of	Hexane
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Metabolic	Networks

Metabolic	Network	of	E.	coli.
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What	is	a	graph?

Vertices: P,	Q,	R,	S,	T
Edges: all	the	lines
Degree of	a	vertex: number	of	edges	with	that	vertex	as	an	end-point	
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Interpretation:

The	graph	from	the	last	slide	might	depict	this	roadmap.	Note	that	the	intersection	
of	the	lines	PS	and	QT	is	not	a	vertex,	since	it	does	not	correspond	to	a	cross-roads
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Another	Interpretation:

If	P,	Q,	R,	S	and	T	represent	football	teams,	then	the	existence	of	an	edge	might	
correspond	to	the	playing	of	a	game	between	the	teams	at	its	end-points.	Thus,	team	P	
has	played	against	teams	Q,	S	and	T,	but	not	against	team	R.	In	this	representation,	the	
degree	of	vertex	is	the	number	of	games	played	by	the	corresponding	team.	
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Two	different	graphs?	No!

In	the	right	graph	we	have	removed	the	'crossing'	of	 the	lines	PS	and	QT	by	drawing	the	line	PS	outside	 the	
rectangle	PQST.	The	resulting	graph	still	tells	us	whether	there	is	a	direct	road	from	one	intersection	 to	another,	
and	which	football	teams	have	played	which.	The	only	information	 we	have	lost	concerns	'metrical'	properties,	
such	as	the	length	of	a	road	and	the	straightness	of	a	wire.
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The	first	scientific	article	using	the	term	graph
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Directed	Graphs	(Digraphs)

Assume	again	a	graph	depicts	a	roadmap.	The	study	of	directed	graphs	(or	digraphs,	as	we	abbreviate	them)	
arises	when	making	 the	roads	into	one-way	streets.	An	example	of	a	digraph	is	given	above,	the	directions	of	the	
one-way	streets	being	indicated	by	arrows.	(In	this	example,	there	would	be	chaos	at	T,	but	that	does	not	stop	us	
from	studying	 such	situations!)	
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Walks,	Paths,	and	Cycles

Much	of	graph	theory	 involves	'walks'	of	various	kinds.	A	walk	is	a	'way	of	getting	from	one	vertex	to	another',	
and	consists	of	a	sequence	of	edges,	one	following	 after	another.	For	example,	in	the	above	figure P	—>	Q—>R	is	
a	walk	of	length	2,	and	P	—>	S	—>	Q	—>	T	—>	S	—>	R	is	a	walk	of	length	5.	A	walk	in	which	no	vertex	appears	
more	than	once	is	called	a	path;	for	example	and	P	—>	Q	—>	R—>	S	 is	a	path.	A	walk	in	which	you	end	where	
you	started,	for	example		Q	—>	S	—>	T	—>	Q	,	is	called	a	cycle. 12



Connectedness

Some	graphs	are	in	two	or	more	parts.	For	example,	consider	 the	graph	whose	vertices	are	the	stations	of	 the	Copenhagen	
Metro	and	the	New	York	Subway,	and	whose	edges	are	the	lines	joining	 them.	It	is	impossible	 to	travel	from	Østerport to	
Grand	Central	Station	using	only	edges	of	this	graph,	but	if	we	confine	our	attention	to	the	Copenhagen	Metro	only,	then	we	
can	travel	from	any	station	to	any	other.	A	graph	that	is	in	one	piece,	so	that	any	two	vertices	are	connected	by	a	path,	is	a	
connected	graph;	a	graph	in	more	than	one	piece	is	a	disconnected	graph.	
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Weighted	Graphs

Consider	 the	above	graph:	it	is	a	connected	graph	in	which	a	non-negative	number	 is	assigned	 to	each	edge.	Such	a	graph	 is	
called	a	weighted	graph,	and	the	number	assigned	to	each	edge	e	is	the	weight	of	e,	denoted	by	w(e).	
Example:	Suppose	 that	we	have	a	'map'	of	 the	form	shown	above,	in	which	the	letters	A	to	L	refer	to	towns	that	are	
connected	by	roads.	Then	the	weights	may	denote	 the	length	of	these	roads.

14



Shortest	Path	(between	one pair	of	vertices)

What	is	the	length	of	the	shortest	path	(=distance)	from	A	to	L?	

The	problem	 is	to	find	a	path	from	A	to	L	with	minimum	 total	weight.	This	problem	 is	called	the	Shortest	Path	Problem.	Note	
that,	if	we	have	a	weighted	graph	in	which	each	edge	has	weight	1,	then	the	problem	reduces	to	that	of	 finding	 the	number	of	
edges	in	the	shortest	path	from	A	to	L.	

15



All-Pairs	Shortest	Path

What	is	the	length	of	 the	shortest	path	(=distances)	from	any	vertex	to	any	vertex?	

This	problem	 is	called	the	All-Pairs	Shortest	Path	Problem
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All-Pairs	Shortest	Path	:	A	Solution	for	Some	Cities	in	Australia
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One	of	the	most	decorative	
tables	of	distances	(in	Roman	
miles)	between	major	
European	cities	printed	in	
the	eighteenth	century.	Not	
only	were	the	data	extremely	
useful	for	traveling	but	also	
for	sending	a	letter,	because	
distance,	not	weight,	
determined	the	price.

(From	the	“Historic	Maps	Collection”,	
Princeton	University	Library,	link:	here

http://libweb5.princeton.edu/visual_materials/maps/websites/

thematic-maps/introduction/introduction.html)
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Matrix	Representations	for	Graphs

If	G	is	a	graph	with	vertices	labelled	 {1,	2,	...},	its	adjacency	matrix	A is	the	n	x	n	matrix	whose	ij-th entry	is	the	number	of	
edges	joining	 vertex	i and	vertex	j.	Two	nodes	i and j	are	adjacent	if	the		ij-th entry in	the	adjcacencymatrix	is	larger	than	0.	

If,	in	addition	 to	the	vertices,	the	edges	are	labelled	{1,	2,...,	m},	its	incidence	matrix	M	is	the	n	x	m	matrix	whose	ij-th entry	
is	1	if	vertex	i is	incident	to	edge	j and	0	otherwise.	The	figure	above	shows	a	labelled	graph	G	with	its	adjacency	and	
incidence	matrices.	 19



Adjacency	Matrix	for	Weighted	Graphs

Given	a	weighted	graph	G,	the	adjacency	matrix	A is	the	matrix	whose	ij-th entry	is	the	weight	of	the	
edge	between	vertex	i and	vertex	j.	
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Matrix-Matrix	Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓ ◆
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Matrix-Matrix	Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓ ◆
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Matrix-Matrix	Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓
6 12 20
10 14 8

◆

M ⇥N = R

rij =
X

k

mik ⇤ nkj
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Matrix-Matrix	Multiplication
Recap

✓
1 0 2 3
�1 2 2 1

◆
⇥

0

BB@

1 2 3
4 5 2
1 2 1
1 2 5

1

CCA =

✓
6 12 20
10 14 8

◆

✓
r00 r01 r02
r10 r11 r12

◆ ✓
r11 r12 r13
r21 r22 r23

◆
Zero-based	Numbering	 (“Zero	indexed”) One-based	Numbering	 (“One	indexed”)
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Zero-Indexing	

(picture	from	xkcd.com)

Zero-based	numbering	is	a	way	of	numbering	 in	which	the	initial	element	of	a	sequence	is	assigned	 the	index	0,	
rather	than	the	index	1	as	is	typical	in	everyday	non-mathematical/non-programming	 circumstances.

Make	sure	that	it	is	clear	what	you	mean,	when	you	say,	e.g.,	the	“row	with	index	1”	in	a	matrix.

25



Matrix-Matrix	Multiplication	in	Java	(for	Square	Matrices)

Number	of	additions	per	result[i][j] entry: size
Number	of	multiplications	per	result[i][j] entry: size
Number	of	entries	in	the	resultmatrix: size x size
Overall		number	of	operations	 (additions	and	multiplications): 2 x size x ( size x size )

Overall	computational	runtime: O(size3)

Provided	Code:	MatMult.java
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Matrix-Matrix	Multiplication	in	Java	

27
Provided	Code:	MatMult.java



Matrices	in	Java:	Implemented	as	Arrays	of	Arrays:

“Matrix”	dimensions:

M has	M.lengthmany	rows	and	M[0].lengthmany columns
N has	N.lengthmany	rows	and	N[0].lengthmany columns
The	result	needs	to	have	M.lengthmany rows	and	N[0].length many	columns

Provided	Code:	MatMult.java
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Powers	of	the	Adjacency	Matrix

A =

0

BBBBBB@

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 0 0 0
4 0 0 0 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

1

CCCCCCA

Ak
= A⇥A . . .⇥A| {z }

k times

is called the k-th power of the adjacency matrix
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A2 =

0

BBBBBB@

1 2 3 4 5 6

1 2 1 1 1 1 0
2 1 3 0 1 1 0
3 1 0 1 0 1 0
4 1 1 0 2 0 0
5 1 1 1 0 3 1
6 0 0 0 0 1 1

1

CCCCCCA
A3 =

0

BBBBBB@

1 2 3 4 5 6

1 2 4 1 1 4 1
2 4 2 3 1 5 1
3 1 3 0 1 1 0
4 1 1 1 0 4 2
5 4 5 1 4 2 0
6 1 1 0 2 0 0

1

CCCCCCA
A4 =

0

BBBBBB@

1 2 3 4 5 6

1 8 7 4 5 7 1
2 7 12 2 6 7 1
3 4 2 3 1 5 1
4 5 6 1 6 2 0
5 7 7 5 2 13 4
6 1 1 1 0 4 2

1

CCCCCCA

Theorem:

If G is a graph with adjacency matrix A, and vertices

with indices 1, . . . , n then for each positive integer k

the ij-th entry of Ak

is

the number of di↵erent walks using exactly k edges

from node i to node j
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A2 =

0

BBBBBB@

1 2 3 4 5 6

1 2 1 1 1 1 0
2 1 3 0 1 1 0
3 1 0 1 0 1 0
4 1 1 0 2 0 0
5 1 1 1 0 3 1
6 0 0 0 0 1 1

1

CCCCCCA
A3 =

0

BBBBBB@

1 2 3 4 5 6

1 2 4 1 1 4 1
2 4 2 3 1 5 1
3 1 3 0 1 1 0
4 1 1 1 0 4 2
5 4 5 1 4 2 0
6 1 1 0 2 0 0

1

CCCCCCA
A4 =

0

BBBBBB@

1 2 3 4 5 6

1 8 7 4 5 7 1
2 7 12 2 6 7 1
3 4 2 3 1 5 1
4 5 6 1 6 2 0
5 7 7 5 2 13 4
6 1 1 1 0 4 2

1

CCCCCCA

Example	:
Consider	the	two	vertices	with	index	4	and	5	in	𝐴"

Length	4	walks:
1) 4	->	5	->	1	->	2	->	5
2) 4	->	5	->	2	->	1	->	5

There	are	2	walks	of	length	4.	
Furthermore,	𝐴"#" =2.	

A =

0

BBBBBB@

1 2 3 4 5 6

1 0 1 0 0 1 0
2 1 0 1 0 1 0
3 0 1 0 0 0 0
4 0 0 0 0 1 1
5 1 1 0 1 0 0
6 0 0 0 1 0 0

1

CCCCCCA
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In	Java

Provided	Code:	AdjacencyMatMult.java 32



Proof:	(also	on	blackboard)
Let G be a graph with adjacency matrix A, and vertices 1, . . . , n. We proceed

by induction on k to obtain the result.

Base Case:

Let k = 1. A1
= A. aij is the number of edges from i to j, which is identical to

the number of walks of length 1 from i to j.

Inductive Step:

Assume true for a positive integer k. Let bij be the ij-th entry of Ak
, and let

aij be the ij-th entry of A. By the inductive hypothesis bij is the number of

walks of length k from i to j. Consider the ij-th entry of Ak+1
= A ⇥ Ak

, i.e,

Ak+1
ij = ai1b1j + ai2b2j + . . . + ainbnj =

Pn
k=1 aikbkj . Consider ai1b1j . This is

equal to the number of walks of length 1 from i to 1 times the number of walks

of length k from 1 to j. This is therefor equal to the number of walks of length

k + 1 from i to j, where 1 is the second vertex. This argument holds for each

vertex m, i.e., aimbmj is the number of walks from i to j in which m is the

second vertex. Therefore, the sum is the number of all possible walks from i
to j. 33



Algorithm	for	All-Pairs	Shortest	Path

Weighted	Graph	G	with	weights	on	edges:

• What	is	the	distance	(=length	of	the	
shortest	path) between	A	and	L	?

17

Generalization:
• What	are	the	distances of	

ALL	paths	(=lenghts of	ALL	
shortest	paths)	between	all	
pairs	of	nodes?

…	and	how	can	we	find	all	
these	distances? 34



The	Edge	Weight	Matrix	W

Definition:

Wij =

8
><

>:

the weight of the edge (i, j) if the edge (i, j) exists

0 if i = j

1 else

Example:

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA

Note:	Matrix	W	has	entries	
corresponding	 to	infinity,	as	it	might	
be	impossible	 to	reach	vertex	j	from	
vertex	i via	1 edge.

We	assume	all	weights	are	not	
negative,	i.e.,		larger	or	equal	to	0.

Interpretation:

Wij is the distance from vertex i to vertex j using maximally 1 edge

weights	are	depicted	in	red
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A	modified	Matrix-Matrix	Multiplication

0

@
1 0 2
1 2 4
3 1 2

1

A�

0

@
1 2 3
4 5 2
1 2 5

1

A =

0

@
2 3 2
2 3 4
3 4 3

1

A

M �N = R

Note:	this	operation	is	very	similar	to	the	
standard	matrix-matrix	multiplication:	however,	
for	computation	of	the	ij-th entry	the	
multiplication	 is	replaced	by	addition,	and	
addition	 is	replaced	by	the	minimum	 operation.

Definition:

rij = mink{mik + nkj}

Example:

r33 = min{3 + 3, 1 + 2, 2 + 5} = 3 36



Theorem:

If G is a weighted graph with edge weight matrix W ,

and vertices with indices 1, . . . , n then for each positive

integer k

the ij-th entry of W k
= W �W � . . .�W| {z }

k times
is

the length of the shortest path from i to j
using maximally k edges
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Examples	:
Consider	the	two	vertices	with	index	4	and	1	in	𝑊"

Shortest	Path	using	maximally	4 edges:
4	->	6	->	3	->	2	->	1	(distance	7)

W 2 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 1
2 1 0 2 10 3 5

3 3 2 0 4 6 3

4 8 10 4 0 6 1

5 2 3 6 6 0 7

6 1 5 3 1 7 0

1

CCCCCCCCCA

W 3 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 8 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 4 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

Consider	the	two	vertices	with	index	5	and	3	in	𝑊"

Shortest	Path	using	maximally	4 edges:
5	->	1	->	2	->	3	(distance	5)

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA
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Matrix-Matrix	Multiplication	in	Java	(for	Square	Matrices)
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Modified	Matrix-Matrix	Multiplication	in	Java	(for	Square	Matrices)

Standard	Matrix-
Matrix	Multiplication:

Provided	Code:	ShortestPaths.java 40



In	Java

Provided	Code:	ShortestPaths.java
Note:	Java	has	no	explicit	support	 for	infinity	 for	Integers	(but	for	floating	
point	values)		
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W 2 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 1
2 1 0 2 10 3 5

3 3 2 0 4 6 3

4 8 10 4 0 6 1

5 2 3 6 6 0 7

6 1 5 3 1 7 0

1

CCCCCCCCCA

W 3 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 8 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 8 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 4 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W 5 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 3 7 2 6

2 1 0 2 6 3 5

3 3 2 0 4 5 3

4 7 6 4 0 6 1

5 2 3 5 6 0 7

6 6 5 3 1 7 0

1

CCCCCCCCCA

W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 2 1
2 1 0 2 1 4 1
3 1 2 0 1 1 3

4 1 1 1 0 6 1

5 2 4 1 6 0 1
6 1 1 3 1 1 0

1

CCCCCCCCCA

W 6=W 2 6=W 3 6=W 4=W 5=W 6= . . .

Assume	all	edge	weights	are	not	negative.	The	number	 of	edges	needed	for	a	shortest	path	can	
maximally	be	n-1,	where	n	is	the	number	of	vertices	in	the	graph.	If	the	path	would	go	via	n	edges,	
then	you	would	have	to	visit	at	least	one	vertex	twice,	but	then	the	path	cannot	be	a	shortest	path	
anymore.	Obviously	𝑊% = 𝑊'() for	all	k>n-1.

Answer: n� 1 (which is identical to |V |� 1)

Which value of k is necessary, in order to have W k

contain all the pairwise distances of all vertexes?

42



Lemma:
If G is a weighted graph with edge weight matrix W ,

and vertices with indices 1, . . . , n then

the ij-th entry of Wn�1
= W �W � . . .�W| {z }

n � 1 times

is

the distance from i to j

D := Wn�1
is called the distance matrix of the graph G.
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Computation	of	the	Distance	Matrix	by	Repeated	Squaring

Wn�1 =

0

BBBBBBBBBBBBBBBB@

0

BBBBBBBBBBB@

0

BBBBBB@

0

B@(W �W )| {z }
W 2

�W

1

CA

| {z }
W 3

�W

1

CCCCCCA

| {z }
W 4

�W

1

CCCCCCCCCCCA

| {z }
W 5

� . . .�W

1

CCCCCCCCCCCCCCCCA

| {z }
Wn�1

W (2k) =

0

BBBBBBBBBBB@

0

BBBBBBBBBBB@

0

BBBBBB@

0

B@(W �W )| {z }
W 2

1

CA

2

| {z }
W 4

1

CCCCCCA

2

| {z }
W 8

1

CCCCCCCCCCCA

2

. . .

1

CCCCCCCCCCCA

2

| {z }
W (2k)

n-2	matrix-matrix	multiplication	are	needed	 in	
order	to	compute	the	distance	matrix	𝐷 = 𝑊'()

k	matrix-matrix	multiplication	are	needed	 (namely	
squaring	a	matrix	k	times)	in	order	to	compute	the	
matrix												

2%has	to	be	larger	or	equal	to	n-1,	or	equivalently,	
k	has	to	be	larger	or	equal	to	log/(𝑛 − 1)

W (2k)

Example:	Consider	a	graph	G	with	101	vertices.	In	order	to	compute	the	distance	matrix	D = 𝑊)66 ,	the	left	
approach	needs	to	make	99	matrix-matrix	multiplications.	The	right	approach	(called	repeated	squaring)	
requires	only	7	matrix-matrix	multiplications,	as	27 = 128,	and	D = 𝑊)/9 = 𝑊)66

44



Runtime	Test	in	Java

Note:	

Math.ceil( 
Math.log(size-1)/
Math.log(2) )

returns	the	smallest	integer	larger	or	
equal	to	log2(size-1),	i.e.,	R will	be	
the	distance	matrix	after	this	for loop.

Reminder:

45

log2(x) =
log(x)

log(2)

Provided	Code:	timing.py



The	most	obvious	Application	of	Computing	the	Distance	Matrix:

46



Another	Application	of	the	Distance	Matrix:	
Predicting	Boiling	Points	of	Paraffins

In	1947	Harry	Wiener	defined	the	Wiener-Index of	a	graph	G	in	order	to	predict	the	
boiling	point	of	different	paraffins.	He	used	the	graph	representation	G	of	the	
carbon	backbone	of	a	molecule	with	n carbon	atoms	and	calculated	the	Wiener-
Index	the	sum	of	all	distances	between	all	pairs	of	vertexes,	i.e.	

He	predicted	the	boiling	point	𝑡; to	be

W(G) =
1

2

nX

i=1

nX

j=1

Dij

tB = t0 �
✓
98

n2
(w0 �W(G)) + 5.5 · (p0 � p)

◆

with t0 = 745.42 · log10(n+ 4.4)� 689.4

w0 =

1

6

· (n+ 1) · n · (n� 1)

p0 = n� 3

p = the number of shortest paths i ! . . . ! j of length 3 in G with i < j

= half of the number of entries ”3” in the distance matrix D 47



Wiener	Index	:	Boiling	Point	Prediction,	Example	(2,2-dimethylbutan)

1
4 6

5
2

3 W =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 1 1 1 1 1
2 1 0 1 1 1 1
3 1 1 0 1 1 1
4 1 1 1 0 1 1

5 1 1 1 1 0 1
6 1 1 1 1 1 0

1

CCCCCCCCCA

D = Wn�1 =

0

BBBBBBBBB@

1 2 3 4 5 6

1 0 2 1 2 2 3

2 2 0 1 2 2 3

3 1 1 0 1 1 2

4 2 2 1 0 2 1

5 2 2 1 2 0 3

6 3 3 2 1 3 0

1

CCCCCCCCCA

W(G) =
1

2

nX

i=1

nX

j=1

Dij = 28

t0 = 68.72

w0 =
1

6
· 5 · 6 · 7 = 35

p0 = 6� 3 = 3

p = 3

tB = t0 �
✓
98

n2
(w0 �W(G)) + 5.5 · (p0 � p)

◆

= 68.72� 98

36
(35� 28) + 5.5 · (3� 3)

= 49.66

The	chemical	compound

The	carbon	backbone
Graph	G Edge	Weight	Matrix

Distance	Matrix
Calculation	of	Wiener	Index	and	other	parameters,	
as	well	as	the	resulting	boiling	 point	prediction.

Note:	Depending	on	how	you	chose	to	label	your	graph,	the	edge	
weight	matrix	might	look	different.	This	won’t	matter	for	the	
subsequent	 calculations.
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Wiener	Index	:	Boiling	Point	Prediction,	Example	(2,2-dimethylbutan)

Predicted Boiling Point: tB = 49.66

Real Boiling Point: trealB ⇡ 49.7� 50.0

The	prediction	of	boiling	points	of	paraffins based	on	the	Wiener-Index	of	the	
corresponding	molecular	graph	is	amazingly	accurate.	Try	it	yourself	 (see	
exercises)!	Intuitively,	the	Wiener-Index	quantifies	 the	“compactness”	of	a	graph	
(or	molecule).	 Long	single	chained	molecules	with	n	carbons	have	a	larger	
Wiener-Index	than	molecules	that	contain	many	branches.	Long	molecules	are	
easier	to	break,	and	have	usually	a	lower	boiling	point.		
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