Institut for Matematik og Datalogi 12. december 2018
Syddansk Universitet, Odense KSL/RF

Eksaminatorier DM534 Uge 50

Cryptology

1. Is one of the following the multiplicative inverse of 49 modulo 2217 Or
does no multiplicative inverse exist?

12, 56, 121, 212

2. Which of the following is a valid RSA key (ignoring the fact that the
numbers are not large enough for security)?

(a) PK = (91,37); SK = (91,23)

(b) PK = (143,77); SK = (143,53)
(c) PK = (231,59); SK = (231,47)
(d) PK = (107,25); SK = (107,30)

3. Suppose a public RSA key is PK = (1517,13). Which of the following
is the RSA encryption of the message 437

(a) 1517% (mod 13)
(b) 433 (mod 1517)
(c) 13*3 (mod 1517)

For the right answer, we want to use the algorithm for fast modular
exponentiation (page 33 on the slides). How many times during the
recursive execution is the “if k is odd” case encountered, and how
many times is the “if k is even” case encountered? [Do not include
the base cases k = 0 and k£ = 1 in the counts.]

4. In the Sieve of Eratosthenes, how many lists (including the current)
have been created at the point where the number 13 is the first element
in a list?



Online Algorithms

d.

10.

Prove that no matter which other algorithm than the one from the
lecture notes we define for ski rental, the algorithm will perform worse,
i.e., the competitive ratio will be strictly higher than %.

Start by analyzing the algorithms “Buy on day 5” and “Buy on day
15” to see what happens. The skis still cost 10 units to buy and 1 unit
per day to rent.

For m = 3, which schedule does the List Scheduling algorithm, Ls,
produce on the following input sequence:

1 i 1 i

In the lecture, we proved that the machine scheduling algorithm, Ls,
could not perform better than 2 — % We now consider only two
machines. Thus, m = 2, and the ratio is then % Just because Ls
cannot perform better, it could be that some other algorithm could.
Prove (for m = 2) that this is not the case. You must design an
input, where no algorithm, no matter what decisions it makes, can do
better than % times OPT. You only need sequences with two and three
jobs and a case analysis with only two cases, depending on what an

algorithm does with the second job that is given.

Consider the first bin packing example given in the lecture (slide 19),
where the First-Fit algorithm, FF, uses four bins. Show that OPT only
needs three.

How does the First-Fit algorithm, Fr, behave on the input sequence
below? Item sizes are given in multiples of %.

1 1

Why can the following configuration not have been produced by the
bin packing algorithm Fr? Item size are given in multiples of %.



4
—

11. For bin packing, one can prove the upper bound that Fr is 1.7-
competitive. However, this is a quite hard proof. In this exercise,
we will try to improve (raise) the lower bound.

2

In the lecture, we saw an example demonstrating that Fr can be as
bad as % = 1.5 times OPT.

Let that example inspire you, and try to use items of the following

three sizes:
1 1 1 1 1 1

7 10000 310000 27 1000
Find a sequence where FF performs % times worse than OPT.

Now try using

1 1 1 1 1 1 1 1

43 + 10000" 7 + 100007 3 + 10000 2 + 10000

to get a lower bound close to the 1.7 upper bound.

12. It is very easy to implement FF in JAvA, if there are no efficiency
requirements: just use an array to hold the current level in the bins,
and for each item, search for the first bin with enough space. If you
make sure there are enough bins from the beginning, then there are
no special cases. And you simple count the number of non-empty bins
at the end to get the result.

Implement FF.
Try to define your own algorithm, from scratch or as a variant of FF.

Test your own algorithm up against FF and try to determine which
one is best; for instance on uniformly distributed sequences.

In Java, one way to create pseudorandom floating point numbers uni-
formly distributed in the interval [0, 1] is via the class java.util.Random
and its NextFloat method. You may want to look at the tutorial



here: http://www.functionx.com/java/Lesson18.htm. If you want
to generate the same sequence of pseudorandom numbers in different
invocations of your program (for instance to compare two algorithms
on the same input sequences), you must set the seed in the random
number generator at the start of the program (otherwise it is set to
a different seed at each invocation). This is described in the second
section of the tutorial.



