Online Algorithms

DM534 - Introduction to Computer Science

Kim Skak Larsen
Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)
kslarsen@imada.sdu.dk

December 6, 2018

Ski Rental - a simplest online problem

- A highly skilled, successful computer scientist is rewarded a ski vacation until her company desperately needs her again, at which point she is called home immediately, being notified when she wakes up in the morning.
- At the ski resort, skis cost 10 units in the local currency.
- One can rent skis for 1 unit per day.
- Of course, if she buys, she doesn't have to rent anymore.
- Which algorithm does she employ to minimize her spending?

Ski Rental - a simplest online problem

- A highly skilled, successful computer scientist is rewarded a ski vacation until her company desperately needs her again, at which point she is called home immediately, being notified when she wakes up in the morning.
- At the ski resort, skis cost 10 units in the local currency.
- One can rent skis for 1 unit per day.
- Of course, if she buys, she doesn't have to rent anymore.
- Which algorithm does she employ to minimize her spending?
- What is a good algorithm?

Ski Rental - a simplest online problem

- A highly skilled, successful computer scientist is rewarded a ski vacation until her company desperately needs her again, at which point she is called home immediately, being notified when she wakes up in the morning.
- At the ski resort, skis cost 10 units in the local currency.
- One can rent skis for 1 unit per day.
- Of course, if she buys, she doesn't have to rent anymore.
- Which algorithm does she employ to minimize her spending?
- What is a good algorithm?
- How do we measure if it's a good algorithm?

Competitive Analysis

Competitive analysis is one way to measure the quality of an online algorithm.
Idea:
Let Opt denote an optimal offline algorithm.
"Offline" means getting the entire input before having to compute.
This corresponds to knowing the future!
We calculate how well we perform compared to Opt.

Competitive Analysis

Competitive analysis is one way to measure the quality of an online algorithm.
Idea:
Let Opt denote an optimal offline algorithm.
"Offline" means getting the entire input before having to compute.
This corresponds to knowing the future!
We calculate how well we perform compared to Opt.
Notation:
AlG(I) denote the result of running an algorithm Alg on the input sequence I.
Thus, $\operatorname{Opt}(I)$ is the result of running Opt on I.

Competitive Analysis

Competitive Analysis

An algorithm, Alg, is c-competitive if

$$
\forall I: \frac{\operatorname{ALG}(I)}{\operatorname{OPT}(I)} \leq c .
$$

Competitive Analysis

An algorithm, Alg, is c-competitive if

$$
\forall I: \frac{\operatorname{ALG}(I)}{\operatorname{OPT}(I)} \leq c .
$$

Alg has competitive ratio c if
c is the best (smallest) c for which Alg is c-competitive.

Competitive Analysis

An algorithm, AlG, is c-competitive if

$$
\forall I: \frac{\operatorname{ALG}(I)}{\operatorname{OPT}(I)} \leq c
$$

AlG has competitive ratio c if
c is the best (smallest) c for which AlG is c-competitive.

Technically, the definition of being c-competitive is that $\exists b \forall I: \operatorname{ALG}(I) \leq c \operatorname{OPT}(I)+b$, but the additive term, b, does not become relevant for what we consider. Also not relevant today, a best c does not necessarily exist, so the competitive ratio is inf $\{c \mid$ AlG is c-competitive $\}$.

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

| input sequence \quad decision |
| :--- | :--- |
| it's a new day |

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	buy

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	buy
it's a new day	

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	buy
it's a new day	do nothing

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	buy
it's a new day	do nothing
it's a new day	do nothing
\vdots	\vdots

Ski Rental - a simplest online problem

We have a very simple request sequence with very simple responses:

input sequence	decision
it's a new day	rent
it's a new day	rent
\vdots	\vdots
it's a new day	rent
it's a new day	buy
it's a new day	do nothing
it's a new day	do nothing
\vdots	\vdots
come home	go home

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.
- We choose the algorithm: Buy on day 10.

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.
- We choose the algorithm: Buy on day 10.
- The optimal offline algorithm, Opt:
$d=$ the number of days we get to stay
if $d<10$:
rent every day
else: $\# d \geq 10$
buy on day 1

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.
- We choose the algorithm: Buy on day 10.
- The optimal offline algorithm, Оpt:
$d=$ the number of days we get to stay
if $d<10$:
rent every day
else: $\# d \geq 10$
buy on day 1
- If we are called home before day 10 , we are optimal!
- Our cost: $d<10$.
- Opt's cost: d.

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day \mathbf{X} (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.
- We choose the algorithm: Buy on day 10.
- The optimal offline algorithm, Оpt:

$$
d=\text { the number of days we get to stay }
$$

$$
\text { if } d<10 \text { : }
$$

rent every day
else: $\# d \geq 10$
buy on day 1

- If we are called home before day 10 , we are optimal!
- Our cost: $d<10$.
- Opt's cost: d.
- In the worst case, we are called home at (or any time after) day 10 :
- Our cost: $9+10$.
- Opt's cost: 10.

Ski Rental - a simplest online problem

- So all reasonable algorithms are of the form Buy on day X (or never buy).
- Reminder: It costs 10 to buy skis and 1 to rent.
- We choose the algorithm: Buy on day 10.
- The optimal offline algorithm, ОРт:

```
d = the number of days we get to stay
if }d<10\mathrm{ :
    rent every day
else: # d \geq 10
    buy on day 1
```

- If we are called home before day 10 , we are optimal!
- Our cost: $d<10$.
- Opt's cost: d.
- In the worst case, we are called home at (or any time after) day 10 :
- Our cost: $9+10$.
- Opt's cost: 10.
- Result: we perform at most $\frac{19}{10}<2$ times worse than Opt.

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive? Yes

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive? Yes
Is our algorithm also 2-competitive?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.
Is our algorithm $\frac{19}{10}$-competitive?
Yes
Is our algorithm also 2 -competitive?
Yes

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes

Is our algorithm also 42-competitive?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes
Is our algorithm also 42-competitive?	Yes

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes
Is our algorithm also 42-competitive?	Yes

Is our algorithm 1.5-competitive?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes
Is our algorithm also 42-competitive?	Yes
Is our algorithm 1.5-competitive?	No

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes
Is our algorithm also 42-competitive?	Yes
Is our algorithm 1.5-competitive?	No

Does our algorithm have competitive ratio $\frac{19}{10}$?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.

Is our algorithm $\frac{19}{10}$-competitive?	Yes
Is our algorithm also 2-competitive?	Yes
Is our algorithm also 42-competitive?	Yes
Is our algorithm 1.5-competitive?	No
Does our algorithm have competitive ratio $\frac{19}{10} ?$	Yes

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.
Is our algorithm $\frac{19}{10}$-competitive?
Yes
Is our algorithm also 2 -competitive?
Is our algorithm also 42-competitive?
Yes
Is our algorithm 1.5-competitive?
Yes
Does our algorithm have competitive ratio $\frac{19}{10}$? Yes
Does our algorithm have competitive ratio 2?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.
Is our algorithm $\frac{19}{10}$-competitive? YesIs our algorithm also 2-competitive? YesIs our algorithm also 42-competitive? YesIs our algorithm 1.5-competitive?No
Does our algorithm have competitive ratio $\frac{19}{10}$? Yes
Does our algorithm have competitive ratio 2? No

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.
Is our algorithm $\frac{19}{10}$-competitive?
Yes
Is our algorithm also 2 -competitive?
Yes
Is our algorithm also 42-competitive?
Yes
Is our algorithm 1.5-competitive?
No
Does our algorithm have competitive ratio $\frac{19}{10}$? Yes
Does our algorithm have competitive ratio 2? No
Does our algorithm have competitive ratio 1.5 ?

Competitive Analysis

In general, we want to define good algorithms for online problems and prove that they are good.

The ratio $\left(\frac{19}{10}\right)$ from ski rental is a guarantee:
That algorithm never performs worse than $\frac{19}{10}$ times Opt.
Is our algorithm $\frac{19}{10}$-competitive?
Yes
Is our algorithm also 2 -competitive?
Yes
Is our algorithm also 42-competitive?
Yes
Is our algorithm 1.5-competitive?
No
Does our algorithm have competitive ratio $\frac{19}{10}$? Yes
Does our algorithm have competitive ratio 2? No
Does our algorithm have competitive ratio 1.5? No

Online Problems

So, what characterizes an online problem?

- Input arrives one request at a time.
- For each request, we have to make an irrevocable decision.
- We want to minimize cost.

Online Problems

So, what characterizes an online problem?

- Input arrives one request at a time.
- For each request, we have to make an irrevocable decision.
- We want to minimize cost.

Machine Scheduling

- $m \geq 1$ machines.
- n jobs of varying sizes arriving one at a time to be assigned to a machine.
- The goal is to minimize makespan, i.e., finish all jobs as early as possible.
- Algorithm List Scheduling (Ls): place next job on the least loaded machine.

Machine Scheduling - List Scheduling example

$$
\begin{gathered}
M_{1} \quad M_{2} \quad M_{3} \quad M_{4} \\
\mathrm{LS}
\end{gathered}
$$

Machine Scheduling - List Scheduling example

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Ls

Machine Scheduling - List Scheduling example

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Ls

Machine Scheduling - List Scheduling example

Machine Scheduling - List Scheduling example

On some sequences, 10 is a good result.
On some sequences, 1.000 .000 is a good result.
Sometimes 1000 is a bad result.

It depends on what is possible, i.e., how large or "difficult" the input is.

Competitive Analysis - why OPT?

OPt is not an online algorithm.
However, it is a natural reference point:

- Our online algorithms cannot perform better than Opt.
- As input sequences I get harder, $\operatorname{OPT}(I)$ typically grows, so a comparison to OPT remains somewhat reasonable.

Formally:

- For any Alg and any $I, \frac{\operatorname{AlG}(I)}{\operatorname{Opt}(I)} \geq 1$.
- We want to design algorithms with smallest possible competitive ratio.

Machine Scheduling - List Scheduling example

$$
\begin{array}{ccccc}
M_{1} \quad M_{2} \quad M_{3} & M_{4} & M_{1} & M_{2} & M_{3}
\end{array} M_{4}
$$

Machine Scheduling - List Scheduling example

1							
M_{1}	M_{2}	M_{3}	M_{4}	1			
	LS		M_{1}	M_{2}	M_{3}	M_{4}	
				OPT			

Machine Scheduling - List Scheduling example

Machine Scheduling - List Scheduling example

What does Opt do now?

Machine Scheduling - List Scheduling example

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

\section*{| 1 | 1 | 1 | 1 | $\square 1$ | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |}

$$
\begin{array}{cccccc}
M_{1} \quad M_{2} \quad M_{3} & M_{4} & M_{1} & M_{2} & M_{3} & M_{4} \\
\text { Ls } & & \text { OPT }
\end{array}
$$

Machine Scheduling－LS is at best $\left(2-\frac{1}{m}\right)$－competitive ローロローロロロロロロロ4

\square			\square			
M_{1}	M_{2}	M_{3}	M_{4}	M_{1}	M_{2}	M_{3}

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

$1 \square$
$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Ls

$\square \square 1$

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive | $\square 1$ | \square | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square	1	1	
M_{1}	M_{2}	M_{3}	M_{4}

$\square \square 1 \square$
$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive | $1 \square$ | 1 | $\square 1$ | 1 | \square | 1 | 1 | \square | 1 | $1 \square$ | \square | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\square 1$	1	\square	1
M_{1}	M_{2}	M_{3}	M_{4}
	LS		

$\frac{1}{1} \square \square \square$
$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive | $\square 1$ | \square | \square | \square | 1 | \square | 1 | \square | 1 | 1 | \square | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{1} \square \frac{1}{1} \square$
$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

$\begin{array}{ccc}\frac{1}{1} & \frac{1}{1} & \square \\ M_{1} & M_{2} & M_{3}\end{array}$	M_{4}			
LS				

$\frac{1}{1}$	$\left.\begin{array}{ll}\frac{1}{1} & \frac{1}{1} \\ \hline\end{array}\right]$

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive

$\frac{1}{1}$		$\frac{1}{1}$	$\frac{1}{1}$
$\frac{1}{1}$	$\frac{1}{1}$		
M_{1}	M_{2}	M_{3}	M_{4}
	LS		

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$

$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1}$		
$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1}$	
M_{1}	M_{2}	M_{3}	M_{4}	
	LS			

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$
$\square 1 \square \square \square 1 \square \square 1 \square 1 \square \square 1 \square \square \square 1 \square \square \square \square \square 1 \square \square 1 \square 4$

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$
Opt

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$

Thus,

$$
\frac{\operatorname{ALG}(I)}{\operatorname{OPT}(I)}=\frac{7}{4}=2-\frac{1}{4}
$$

Machine Scheduling - LS is at best $\left(2-\frac{1}{m}\right)$-competitive ${ }^{\text {SDU }}$

In general,

$$
\frac{\operatorname{ALG}(I)}{\operatorname{OPT}(I)} \geq \frac{(m-1)+m}{m}=\frac{2 m-1}{m}=2-\frac{1}{m}
$$

Machine Scheduling - proof techniques

You have just seen a

lower bound proof

In our context, that is relatively easy: Just demonstrate an example (family of examples), where the algorithm performs worse than some ratio.

Machine Scheduling - proof techniques

You have just seen a

lower bound proof

In our context, that is relatively easy: Just demonstrate an example (family of examples), where the algorithm performs worse than some ratio.

Now we want to show the much harder

We must show that it is never worse than a given ratio for any of the (potentially infinitely many) possible input sequences.

Machine Scheduling - Ls is $\left(2-\frac{1}{m}\right)$-competitive

t ends at the makespan and start at ℓ $t_{\text {max }}$ is the length of the longest job T is the total length of all jobs
$\mathrm{OPT} \geq T / m$
OPT $\geq t_{\text {max }}$
$V=\ell \cdot m$
$T \geq V+t$, due to Ls's choice for t

$$
\begin{aligned}
\mathrm{LS} & =\ell+t \\
& \leq \frac{T-t}{m}+t, \text { since } \ell=\frac{V}{m} \text { and } V \leq T-t \\
& =\frac{T}{m}+\left(1-\frac{1}{m}\right) t \\
& \leq \frac{T}{m}+\left(1-\frac{1}{m}\right) t_{\mathrm{max}} \\
& \leq \mathrm{OPT}+\left(1-\frac{1}{m}\right) \mathrm{OPT}, \text { from OPT inequalities above } \\
& =\left(2-\frac{1}{m}\right) \mathrm{OPT}
\end{aligned}
$$

Machine Scheduling

Since we have both an upper and lower bound, we have shown the following:

Theorem

The algorithm Ls for minimizing makespan in machine scheduling with $m \geq 1$ machines has competitive ratio $2-\frac{1}{m}$.

Bin Packing

- Unbounded supply of bins of size 1 .
- n items, each of size strictly between zero and one, to be placed in a bin.
- Obviously, the items placed in any given bin cannot be larger than 1 in total.
- The goal is to minimize the number of bins used.
- Algorithm First-Fit (FF): place next item in the first bin with enough space. The ordering of the bins is determined by the first time they receive an item.

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - FF example

FF

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF
Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF
Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF
Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF
Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF
Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF

Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF

Opt

Bin Packing - simple lower bound against FF

$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

| $1 / 3$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | | | | | | |
| $1 / 3$ | $1 / 2$ | | $1 / 2$ | | $1 / 2$ | $1 / 2$ |

FF
Opt

Bin Packing - simple lower bound against FF

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF

Opt

Bin Packing - simple lower bound against FF

All items are slightly larger than the indicated fraction, e.g., $\frac{1}{3}+\frac{1}{1000}$.

FF

Opt

Thus,

$$
\frac{\mathrm{FF}(I)}{\operatorname{OPT}(I)} \geq \frac{\frac{n}{4}+\frac{n}{2}}{\frac{n}{2}}=\frac{3}{2}
$$

Bin Packing - First-Fit

- FF has been shown to be 1.7 -competitive [hard]. Thus, the competitive ratio is at most 1.7.
- We have just shown that the competitive ratio is at least 1.5.
- So, the competitive ratio of FF is in the interval [1.5, 1.7].
- We'll approach the precise value in the exercises.

How To Learn More

You'll meet online algorithms in courses, without necessarily being told that they are online problems.
A formal treatment of this topic is somewhat abstract and heavy on proofs, and more appropriate for the MS level. At that point, you can take the course

DM860: Online Algorithms

or read

IMADA People in Online Algorithms

Online Algorithms		
Jon Boyar	Online algorithms, combinatorial optimization, cryptology, computational complexity	
Lene Monrad Favrholdt	Online algorithms, graph algorithms	
	Kim Skak Larsen	Online algorithms, algorithms and data structures, database systems, semantics
	Christian Kudahl	Online algorithms
	Caroline Berntsen Knudsen	Online algorithms

