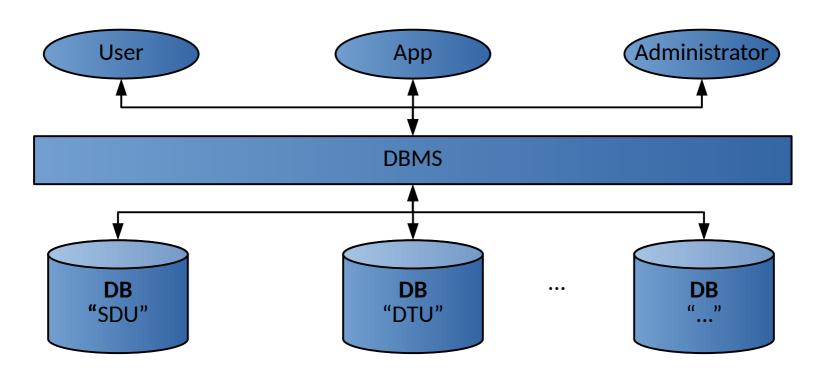

DM534: Introduction to Relational Databases

Oct 23, 2018 Christian Wiwie

What are Databases?


- Repository for large data amounts
- Describes a logical structure of contained data
- Guarantees data integrity by enforcing constraints
- Allows for efficient access
- Consistent and safe storage

Database Management System (DBMS)

- A DBMS manages databases
- Access to database only via DBMS

Why learn about Databases?

- Used almost everywhere
- Crucial for safety & integrity of stored data
- Jobs exist dealing specifically with databases
- Increasingly relevant
 - Technical advances → More & larger data amounts

Where are Databases used?

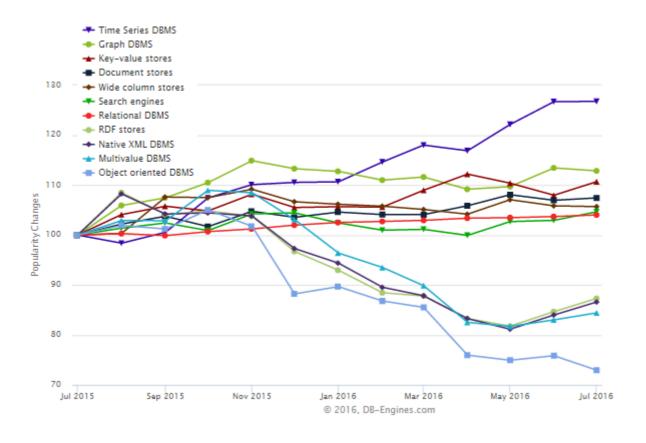
- Wherever large amounts of data are managed
- Often multiple DBMS in use that cater specific needs
- Google uses Bigtable for web indexing, Google Maps, ...
- Facebook uses MySQL; TAO for graph search, ...
- Other applications
 - Corporate data: payrolls, inventory, sales, customers, ...
 - Web search: Google, Live, Yahoo, ...
 - Social networks: Facebook, Twitter, ...
 - Scientific and medical databases

Features of a modern DBMS

- Highly efficient access to stored data using indexes
- Backup/log mechanisms ensure data safety
- Security policies to manage access permissions
- Data consistency: Can enforce complex data constraints, including dependencies
- Flexible searching, sorting, filtering
- Ensures all the above with simultaneous multi-user access

Databases vs. storage in files

- File storage does not provide most of these features
 - → Structure and constraints need to be imposed manually
- Complex operations
 - not trivial to do right → Error prone
 - are slow, e.g. searching, sorting



Types of DBMS / databases

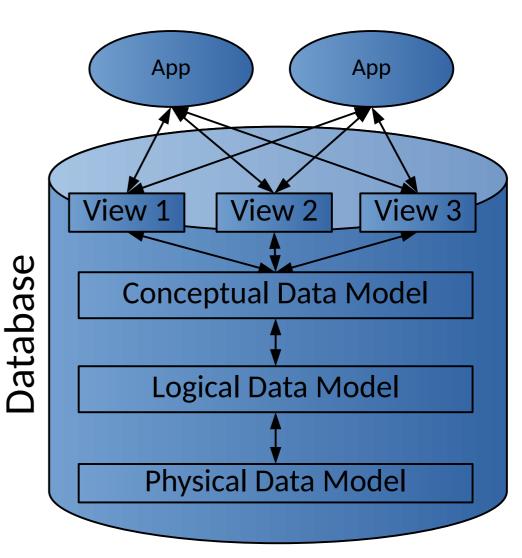
- Data can be modeled and organized differently
- Optimized for specific kinds of operations
- Relational DBMS (RDBMS) / databases the most widespread
 - Based on mathematical relations
 - Basically, a database is a collection of relations
 - e.g. MySQL, PostgreSQL, ...
- Graph DBMS / databases
 - Data is a network, with entities and connections between them
 - e.g. neo4j

DBMS type popularity

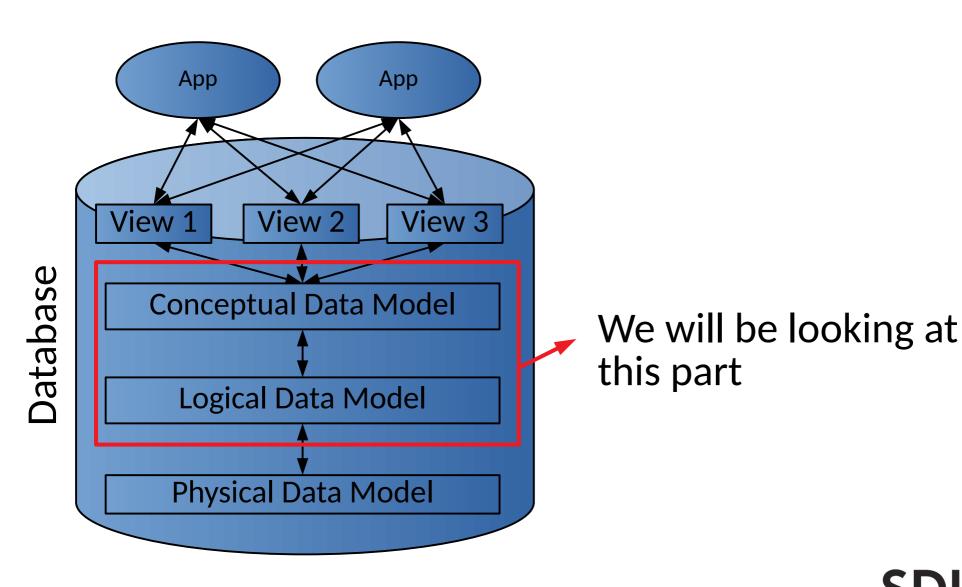
Most widely used DBMS

Ranking of most widely used DBMS

346 systems in ranking, October 2018

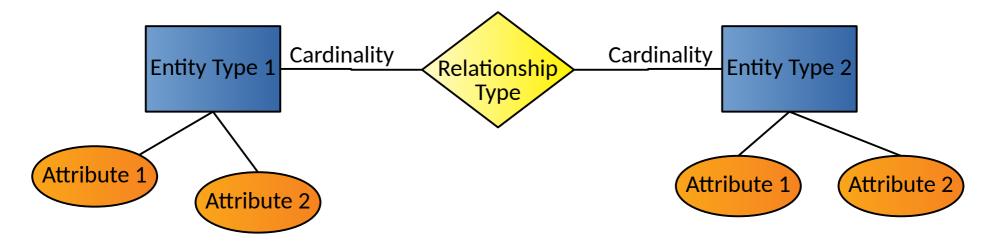

	Rank				Score		
Oct 2018	Sep 2018	Oct 2017	DBMS	Database Model	Oct 2018	Sep 2018	Oct 2017
1.	1.	1.	Oracle 🚹	Relational DBMS	1319.27	+10.15	-29.54
2.	2.	2.	MySQL 🚹	Relational DBMS	1178.12	-2.36	-120.71
3.	3.	3.	Microsoft SQL Server 🚹	Relational DBMS	1058.33	+7.05	-151.99
4.	4.	4.	PostgreSQL 🚹	Relational DBMS	419.39	+12.97	+46.12
5.	5.	5.	MongoDB 🖽	Document store	363.19	+4.39	+33.79
6.	6.	6.	DB2 🖽	Relational DBMS	179.69	-1.38	-14.90
7.	1 8.	1 9.	Redis 🚹	Key-value store	145.29	+4.35	+23.24
8.	4 7.	1 0.	Elasticsearch 🖽	Search engine	142.33	-0.28	+22.09
9.	9.	4 7.	Microsoft Access	Relational DBMS	136.80	+3.41	+7.35
10.	10.	4 8.	Cassandra 🚹	Wide column store	123.39	+3.83	-1.40

Source: https://db-engines.com/en/ranking


Internal Structure of a Database

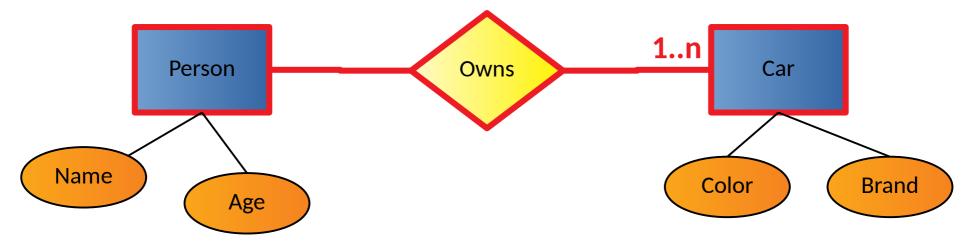
- Multiple levels of abstraction
- Higher levels independent of lower levels
- Software independent of how data is logically and physically structured and stored

Internal Structure of a Database

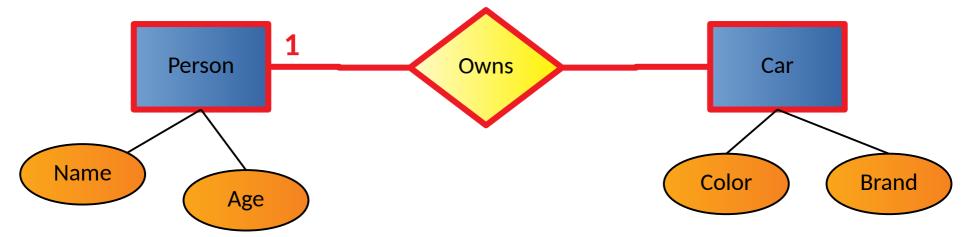


- Semantics of stored data
- Which entities (concepts) are stored?
- Which relationships exist between entities?

Independent of DBM type and specific DBMS used


Visualized with Entity-Relationship (ER) diagrams:

 Cardinality: How many entities are involved in a relationship?


Example Cardinalities

- Read:
 - One person owns one or more cars

Example Cardinalities

- Read:
 - One car is owned by exactly one person
 - → Constraints do not necessarily hold in reality (joint ownership)

Logical Data Model

- Usually derived from conceptual data model
- Expressed in terms of data structures specific to type of DBMS
 - Relational DBMS: relational (logical) data model
 - Graph DBMS: a graph structure

• But: Still independent of specific DBMS used

Relational (Logical) Data Model

- Main structural concept: relations
 - Basically a table with rows and columns
- A relation has a relation schema
 - Specifies structure of data that can be stored in relation

- relations != relationship
 - Relationship is part of conceptual data model
 - A relation can hold data for entities or relationships

Relational (Logical) Data Model

- A relation schema consists of:
 - a name
 - a set of attribute names
 - Optionally: attribute types

```
relation_name(attribute<sub>1</sub>, attribute<sub>2</sub>, ...) or relation_name(attribute<sub>1</sub>: type<sub>1</sub>, attribute<sub>2</sub>: type<sub>2</sub>, ...)
```


Relation Schemas

- A relation usually corresponds to
 - Real world entity types (e.g. car, person, ...)
 - Real world relationship types (e.g. person owns car)
- Example relation schemas:
 - Car(color, brand)
 - Person(name: CHAR(20),age: INTEGER)
 - Owns(name, age, color, brand)

Relation Schemas

- Example relation schema:
 - Car(color, brand)

- Reads:
 - Relation 'Car' contains/describes cars with attributes color and brand

Relation Instances

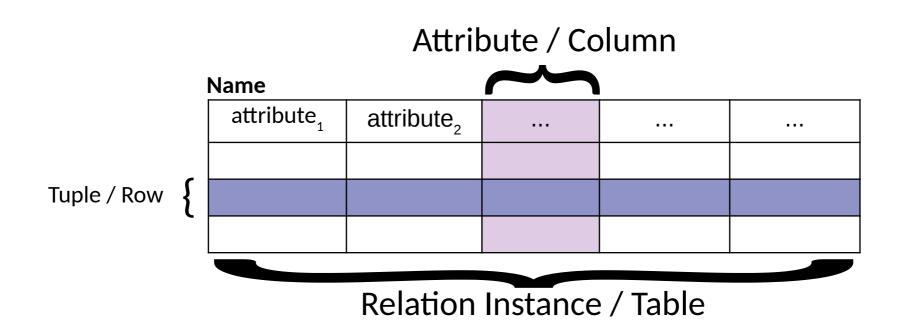
 A relation or relation schema does not specify which data is stored

- A relation instance is a realization of a relation with data
 - Data must conform to relation's schema

Many relation instances can exist for the same relation

Tuples

- A data entry in a relation instance is called tuple
- A tuple is a realization of the relation's schema
 - Assigns values to the attributes of the relation
 - Must conform to relation schema


Tuples

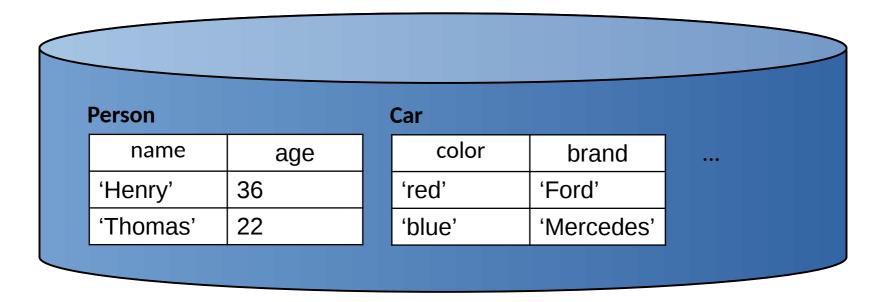
- Example tuples of the relation Car(color, brand):
 - ('red', 'Ford')
 - ('blue', 'Mercedes')
- Example tuples of the relation Person(name, age):
 - ('Henry', 36)
 - ('Thomas', 22)

Relation Instances

Can be visualized by a table:

Relation Instance

• Example relation instance of the person relation


Person

name	age
'Henry'	36
'Thomas'	22

Database Instance

- A database instance is the collection of all its relation instances
 - i.e. all relation schemas and their corresponding tuples

Integrity Constraints (ICs)

Integrity Constraints (ICs)

- Condition that must be true for any database instance
- Specified when relation schemas are defined
- Checked whenever relation instances are modified
 - i.e., when tuple is added, deleted, or modified

Domain constraints

- Domain of valid values for an attribute
 - e.g., INTEGER, FLOAT, CHAR(20), ...
 - correspond to data types in programming languages
- Example relation schema:

Person(name: CHAR(20),age: INTEGER)

name	age	
'Henry'	36	 Domain constraint violation
'Mads'	'Doe'	Domain concurrent violation

→ DBMS will not allow insertion of this tuple

Semantic integrity constraints

- Semantic restrictions on the data
 - e.g., age >= 18
- Example relation schema:

Person(name: CHAR(20),age: INTEGER)

name	age		
'Henry'	36	Const	traint violation
'Mads'	16	CONST	rame violation

→ DBMS will not allow insertion of this tuple

Primary Keys

- Set of relation attributes
 - that uniquely identifies tuples of relation
 - all tuples need to have unique values for these attributes
- Example: CPR is primary key of relation Person
 - → There cannot be two tuples with same CPR number

<u>CPR</u>	Name	Birthday	Address	
1904651243	Svensson	19.04.1965		Not allow
1904651243				

Primary Keys

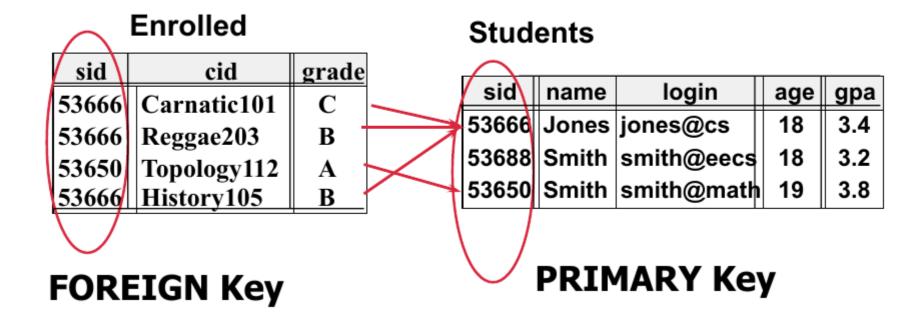
- Primary key "points" to exactly one tuple
 - → can be used to lookup corresponding tuple
 - → e.g., person can be looked up using CPR

What is the name of the person with CPR=1904651243?

-	CPR	Name	Birthday	Address
	1904651243	Svensson	19.04.1965	

Foreign Keys

- Allow to associate tuples in different relations
- Tuple of source relation → tuple of target relation
 - Source and target relation can be the same
 - Can only point to a primary key in the target relation


Example: University Database

- Conceptual schema:
 - Students(<u>sid</u>: string, name: string, login: string, age: integer, gpa:real)
 - Courses(<u>cid</u>: string, cname:string, credits:integer)
 - Enrolled(sid:string, cid:string, grade:string)

Example: Foreign Keys

Query Languages

Query Languages

- Allow manipulation and retrieval of data from a database
- Query languages != programming languages
- not expected to be "turing complete"
 - → i.e., not every operation can be expressed
- not intended to be used for complex calculations
- support easy, efficient access to large data sets

Relational Query Languages

- Based on relational algebra
- For relational databases, i.e. relational data model
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic
 - Allows for much optimization
- SQL: Most widely used relational query language
 - → Understanding Relational Algebra is key to understanding SQL, query processing!

Relational Query Languages

 More on relational query languages and relational algebra on Thursday, 10-11

