DM534 Introduction to Computer Science Lecture on Satisfiability

Peter Schneider-Kamp

petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/

THE SAT PROBLEM

DM549: Propositional Variables

- Variable that can be either false or true
- Set P of propositional variables
- Example:

$$P = \{A,B,C,D,X, Y, Z, X_1, X_2, X_3, ...\}$$

- A variable assignment is an assignment of the values false and true to all variables in P
- Example:

```
X = true
```

$$Z = true$$

DM549: Propositional Formulas

Propositional formulas

- If X in P, then X is a formula.
- If F is a formula, then —F is a formula.
- If F and G are formulas, then $F \wedge G$ is a formula.
- If F and G are formulas, then F ∨ G is a formula.
- If F and G are formulas, then $F \rightarrow G$ is a formula.
- Example: $(X \rightarrow (Y \land -Z))$
- Propositional variables or negated propositional variables are called literals
- Example: X, -X

Which formulas are satisfiable?

$$X_1 \rightarrow X_2$$

$$-X_1 \vee X_2$$

- ..

Satisfiability

- Variable assignment V satisfies formulas as follows:
 - V satisfies X in P iff V assigns X = true
 - V satisfies –F iff V does not satisfy F
 - V satisfies F \(G \) iff V satisfies both F and G
 - V satisfies FV G iff V satisfies at least one of F and G
 - V satisfies $F \rightarrow G$ iff V does not satisfy F or V satisfies G
- A propositional formula F is satisfiable iff there is a variable assignment V such that V satisfies F.
- The Satisfiability Problem of Propositional Logic (SAT):
 - Given a formula F, decide whether it is satisfiable.

Modelling Problems by SAT

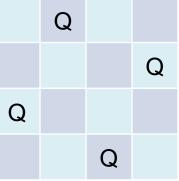
- propositional variables are basically bits
- model your problem by bits
- model the relation of the bits by a propositional formula
- solve the SAT problem to solve your problem

N-TOWERS & N-QUEENS

N-Towers & N-Queens

- **N-Towers**
 - How to place N towers on an NxN chessboard such that they do not attack each other?
 - (Towers attack horizontally and vertically.)

- N-Queens (restriction of N-Towers)
 - How to place N queens on an NxN chessboard such that they do not attack each other?
 - (Queens attack like towers + diagonally.)



Modeling by Propositional Variables

- Model NxN chessboard by NxN propositional variables X_{i,i}
- Semantics: $X_{i,i}$ is true iff there is a figure at row i, column j
- Example: 4x4 chessboard

X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}
X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}
X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}
X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}

- Example solution:
 - $X_{1,2} = X_{2,4} = X_{3,1} = X_{4,3} = true$
 - $X_{i,i} = false$ for all other $X_{i,i}$

Reducing the Problem to SAT

- Encode the properties of N-Towers to propositional formulas
- Example: 2-Towers

$X_{1,1} \rightarrow -X_{1,2}$	"Tower at (I,I) attacks to the right"
$X_{1,1} \rightarrow -X_{2,1}$	"Tower at (I,I) attacks downwards"
$X_{1,2} \rightarrow -X_{1,1}$	"Tower at (1,2) attacks to the left"
$X_{1,2} \rightarrow -X_{2,2}$	"Tower at (1,2) attacks downwards"
$X_{2,1} \rightarrow -X_{2,2}$	"Tower at (2,1) attacks to the right"
$X_{2,1} \rightarrow -X_{1,1}$	"Tower at (2,1) attacks upwards"
$X_{2,2} \rightarrow -X_{1,2}$	"Tower at (2,2) attacks to the left"
$X_{2,2} \rightarrow -X_{2,1}$	"Tower at (2,2) attacks upwards"
$X_{1,1} V X_{1,2}$	"Tower in first row"
$X_{2,1} V X_{2,2}$	"Tower in second row"

Form a conjunction of all encoded properties:

Solving the Problem

Determine satisfiability of

$$(X_{1,1} \rightarrow -X_{1,2}) \land (X_{1,1} \rightarrow -X_{2,1}) \land (X_{1,2} \rightarrow -X_{1,1}) \land (X_{1,2} \rightarrow -X_{2,2}) \land (X_{2,1} \rightarrow -X_{1,1}) \land (X_{2,1} \rightarrow -X_{2,2}) \land (X_{2,2} \rightarrow -X_{1,2}) \land (X_{2,2} \rightarrow -X_{2,1}) \land (X_{1,1} \lor X_{1,2}) \land (X_{2,1} \lor X_{2,2})$$

- Satisfying variable assignment (others are possible):
 - $X_{1.1} = X_{2.2} = true$
 - $X_{1,2} = X_{2,1} = false$

$$(true \rightarrow -false) \land (true \rightarrow -false) \land (false \rightarrow -true) \land (false \rightarrow -true) \land (false \rightarrow -true) \land (false \rightarrow -true) \land (true \rightarrow -false) \land (true \lor false) \land (false \lor true)$$

$$(true \rightarrow true) \land (true \rightarrow true) \land (false \rightarrow -true) \land (false \rightarrow -true) \land (false \rightarrow -true) \land (true \rightarrow true) \land (true \rightarrow true) \land (true \lor false) \land (false \lor true)$$

true \wedge true \wedge

true

SAT Solving is Hard

- Given an assignment, it is easy to test whether it satisfies our formula
- BUT: there are many possible assignments!
- for m variables, there are 2^m possible assignments \odot
- SAT problem is a prototypical hard problem (NP-complete)

USING A SAT SOLVER

SAT Solvers

- SAT solver = program that determines satisfiability
- Plethora of SAT solvers available
 - For the best, visit http://www.satcompetition.org/
 - Different SAT solvers optimized for different problems
- In this course, we use the SAT solver lingeling
 - Very good overall performance at SAT Competition 2016
 - Parallelized versions available: plingeling, treengeling
 - Available from: http://fmv.jku.at/lingeling/

Conjunctive Normal Form (CNF)

- Nearly all SAT solvers require formulas in CNF
- CNF = conjunction of disjunctions of literals
- Example: 2-Towers

$$(X_{1,1} \rightarrow -X_{1,2}) \land (X_{1,1} \rightarrow -X_{2,1}) \land (X_{1,2} \rightarrow -X_{1,1}) \land (X_{1,2} \rightarrow -X_{2,2}) \land (X_{2,1} \rightarrow -X_{1,1}) \land (X_{2,1} \rightarrow -X_{2,2}) \land (X_{2,2} \rightarrow -X_{1,2}) \land (X_{2,2} \rightarrow -X_{2,1}) \land (X_{1,1} \lor X_{1,2}) \land (X_{2,1} \lor X_{2,2})$$

■ Conversion easy: A → B converted to $\neg A \lor B$ $(\neg X_{1,1} \lor \neg X_{1,2}) \land (\neg X_{1,1} \lor \neg X_{2,1}) \land (\neg X_{1,2} \lor \neg X_{1,1}) \land (\neg X_{1,2} \lor \neg X_{2,2}) \land (\neg X_{2,1} \lor \neg X_{1,1}) \land (\neg X_{2,1} \lor \neg X_{2,2}) \land (\neg X_{2,2} \lor \neg X_{2,2}) \land (\neg X_{2,2} \lor \neg X_{2,1}) \land (X_{1,1} \lor X_{1,2}) \land (X_{2,1} \lor X_{2,2})$

- Write formulas in CNF as a list of clauses (= lists of literals)
- Example:

$$[[-X_{1,1}, -X_{1,2}], [-X_{1,1}, -X_{2,1}], [-X_{1,2}, -X_{1,1}], [-X_{1,2}, -X_{2,2}], [-X_{2,1}, -X_{1,1}], [-X_{2,1}, -X_{2,2}], [-X_{2,2}, -X_{1,2}], [-X_{2,2}, -X_{2,1}], [X_{1,1}, X_{1,2}], [X_{2,1}, X_{2,2}]]$$

Conversion to CNF

- Implications can be replaced by disjunction:
 - $F \rightarrow G$ converted to $-F \lor G$
- DeMorgan's rules specify how to move negation "inwards":

$$-(F \wedge G) = -F \vee -G$$

$$-(F \lor G) = -F \land -G$$

Double negations can be eliminated:

$$-(-F) = F$$

- Conjunction can be distributed over disjunction:
 - $F \lor (G \land H) = (F \lor G) \land (F \lor H)$

Variable Enumeration

- SAT solvers expect variables to be identified with integers
- Starting from 1 and up to the number of variables used
- Necessary to map modeling variables to integer!
- Example: 4x4 chessboard
 - X_{i,i} becomes 4*(i-1)+j

X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}
X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}
X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}
X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

(Simplified) DIMACS Format

- Description of DIMACS format for CNF (BB: dimacs.pdf)
- Simplified format (subset) implemented by most SAT solvers:
 - http://www.satcompetition.org/2016/format-benchmarks2016.html
- 2 types of lines for input
 - Starting with "c ": comment
 - Starting with "p ": problem
- 3 types of lines for output
 - Starting with "c": comment
 - Starting with "s ": solution
 - Starting with "v": variable assignment

Input Format 1/2

Comments

- Anything in a line starting with "c " is ignored
- Example:

```
c This file contains a SAT encoding of the 4-queens problem!
c The board is represented by 4x4 variables:
c 1 2 3 4
c 5 6 7 8
c 9 10 11 12
c 13 14 15 16
```

Input Format 2/2

Problem

- Starts with "p cnf #variables #clauses"
- Then one clause per line where
 - Variables are numbered from 1 to #variables
 - Clauses/lines are terminated by 0
 - Positive literals are just numbers
 - Negative literals are negated numbers

Example:

```
p cnf 16 80
 -1 -2 0
-15 - 16 0
1 2 3 4 0
13 14 15 16 0
```

Output Format 1/2

Comments

- just like for the input format
- Example:

```
c reading input file examples/4-queens.cnf
```

Solution

- Starts with "s "
- Then either "SATISFIABLE" or "UNSATISFIABLE"
- Example:

```
s SATISFIABLE
```

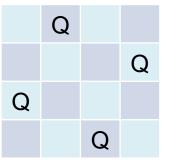
Output Format 2/2

Variable assignment

- Starts with "v "
- Then list of literals that are assigned to true
 - "1" means variable 1 is assigned to true
 - "-2" means variable 2 is assigned to false
- Terminated by "0"
- Example:

$$v$$
 -1 2 -3 -4 -5 -6 -7 8 9 -10 -11 -12 -13 -14 15 -16 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 **15** 16 false true false false false false false true true false false false false false true false



Running the SAT Solver

- I. Save the comment and problem lines into .cnf file.
- Invoke the SAT solver on this file.
- Parse the standard output for the solution line.
- If the solution is "s SATISFIABLE", find variable assignment.

Example:

lingeling 4-queens.cnf

WRITING A SAT SOLVER

Brute-Force Solver

- iterate through all possible variable assignments
- for each assignment
 - if the assignment satisfies the formula
 - output SAT and the assignment
- if no assignment is found, output UNSAT

Empirical Evaluation

• For n variables, there are 2ⁿ possible variable assignments

Example:

- $= 2^{16} = 65,536$ assignments for 4-queens (1 second)
- $^{225} = 33,554,432$ assignments for 5-queens (7 minutes)
- $^{\circ}$ 2³⁶ = 68,719,476,736 assignments for 6-queens (2 weeks)
- $^{\bullet}$ 2⁴⁹ = 562949953421312 assignments for 7-queens (400 years)
- 2⁶⁴ assignments for 8-queens (age of the universe)
- 2⁸¹ assignments for 9-queens (ahem ... no!)

Fast Forwarding 60+Years

- Incremental assignments
- Backtracking solver
- Pruning the search

Empirical Evaluation

For n variables, there are 2ⁿ possible variable assignments

Example:

- 2¹⁰⁰ assignments for 10-queens (1.77 seconds)
- 2¹²¹ assignments for 11-queens (1.29 seconds)
- 2¹⁴⁴ assignments for 12-queens (9.15 seconds)
- 2¹⁶⁹ assignments for 13-queens (5.21 seconds)
- 2¹⁹⁶ assignments for 14-queens (136.91 seconds)

Fast Forwarding 60+Years

- Incremental assignments
- Backtracking solver
- Pruning the search
- Backjumping
- Conflict-driven learning
- Restarts
- Forgetting

Empirical Evaluation

For n variables, there are 2ⁿ possible variable assignments

Example:

- 2²⁵⁶ assignments for 16-queens (0.02 seconds)
- 2¹⁰²⁴ assignments for 32-queens (0.10 seconds)
- 2⁴⁰⁹⁶ assignments for 64-queens (1.08 seconds)
- 2¹⁶³⁸⁴ assignments for 128-queens (17.92 seconds)
- 2⁶⁵⁵³⁶ assignments for 256-queens (366.05 seconds)

Efficient SAT Solving

- in many cases, SAT problems can be solved efficiently
- state-of-the-art SAT solvers can be used as black boxes.
- success of SAT solvers based on
 - relatively simple but highly-optimized algorithms
 - innovative and very pragmatic data structures
- used extensively for scheduling, hardware and software verification, mathematical proofs, ...

Take Home Slide

- SAT Problem = satisfiability of propositional logic formulas
- SAT used to successfully model hard (combinatorial) problems
- solving the SAT problem is hard in the general case
- advanced SAT solvers work fine (most of the time)