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▪ Richard Roettger:
▪ Computer Science (Technical University of Munich and thesis at the ICSI at 

the University of California at Berkeley)

▪ PhD at the Max Planck Institute for Computer Science in Saarbrücken

▪ Since 2014: Assistant Professor at SDU

▪ Research Interests:
▪ Bioinformatics

▪ Machine Learning

▪ Clustering

▪ Biological Networks

▪ Part of the Slides are taken from Arthur Zimek
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▪ Understand the problem of clustering in general

▪ Learn about k-means

▪ Understand the importance of feature spaces and 
object representation

▪ Understand the influence of distance functions

Clustering & Feature Spaces
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▪ Clustering

▪ Clustering in General

▪ Partitional Clustering

▪ Visualization: Algorithmic Differences

▪ Summary

▪ Feature Spaces

▪ Distances

▪ Features for Images

▪ Summary
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Purpose of Clustering

5

▪ Identify a finite number of categories (classes, groups: clusters) in 
a given dataset

▪ Similar objects shall be grouped in the same cluster, dissimilar 
objects in different clusters

▪ “similarity” is highly subjective, depending on the application 
scenario
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How Many Clusters?
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➢ Image taken from: http://fromdatawithlove.thegovans.us/

http://fromdatawithlove.thegovans.us/
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How Many Clusters?
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➢ Everitt, Brian S., et al. “Cluster Analysis”, 5th Edition (2011).
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➢ Everitt, Brian S., et al. “Cluster Analysis”, 5th Edition (2011).
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A Seemingly Simple Problem
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➢ Figure from Tan et al. [2006].

▪ Each dataset can be clustered in many meaningful ways
▪ Highly problem depended

▪ Not known by the algorithm a priori
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About Clustering
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“Clustering is the unsupervised machine-learning task of “grouping or 
segmenting a collection of objects into subsets or ’clusters’ such that 

those within each cluster are more closely related to one another 
than objects assigned to different clusters.“

▪ What is related? For example Customers?
▪ Age?

▪ Behavior?

▪ Kinship?

▪ Treatment of Outliers?

▪ Ill-posed Problem ...
▪ That means there exist multiple solutions

▪ What is the best?
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Overview of a Cluster Analysis
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Steps to Automatization: Cluster Criteria
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▪ Cohesion: how strong are the cluster objects connected (how 
similar, pairwise, to each other)?

▪ Separation: how well is a cluster separated from other clusters?

small within cluster
distance

large between cluster
distance
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Steps to Automatization: Cluster Criteria
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▪ Cohesion: how strong are the cluster objects connected (how 
similar, pairwise, to each other)?

▪ Separation: how well is a cluster separated from other clusters?

small within cluster
distance

large between cluster
distance

• There exist many other criteria, e.g., areas with 
the same density.

• It is important to choose a criterion which fits the 
data!
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Optimization
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▪ Partitional clustering algorithms partition a dataset into k clusters, 
typically minimizing some cost function
▪ no overlaps

▪ all points must be part of a cluster

▪ (compactness criterion), i.e., optimizing cohesion.
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Assumptions for Partitioning Clustering
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▪ Central assumptions for approaches in this family are typically:
▪ number k of clusters known (i.e., given as input)

▪ clusters are characterized by their compactness

▪ compactness measured by some distance function (e.g., distance of all 
objects in a cluster from some cluster representative is minimal)

▪ criterion of compactness typically leads to convex or even spherically 
shaped clusters
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Construction of Central Points: Basics
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▪ objects are points 𝑥 = 𝑥1, … , 𝑥𝑑 in Euclidean vector space ℝ𝑑

▪ dist = Euclidean distance (𝐿2)

▪ I centroid 𝜇𝐶: mean vector of all points in cluster 𝐶
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Cluster Criteria
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▪ Measure for compactness:

𝑇𝐷2 𝐶 = ෍

𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, 𝜇𝐶
2

(sum of squares)

▪ Measure of compactness
for a clustering:

𝑇𝐷2 𝐶1, … , 𝐶𝑘 =෍

𝑖=1

𝑘

𝑇𝐷2(𝐶𝑖)
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Cluster Criteria
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▪ Measure for compactness:

𝑇𝐷2 𝐶 = ෍

𝑝∈𝐶

𝑑𝑖𝑠𝑡 𝑝, 𝜇𝐶
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Basic Algorithm: Clustering by Minimization of 
Variance [Forgy, 1965, Lloyd, 1982]
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▪ start with 𝑘 (e.g., randomly selected) points as cluster 
representatives (or with a random partition into 𝑘 “clusters”)

▪ repeat:
1. assign each point to the closest representative

2. compute new representatives based on the given partitions (centroid of 
the assigned points)

▪ until there is no change in assignment
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𝑘-means
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𝑘-means [MacQueen, 1967] is a variant of the basic algorithm:

▪ A centroid is immediately updated when some point changes its 
assignment

▪ 𝑘-means has very similar properties, but the result now depends 
on the order of data points in the input file

Note:

▪ The name “𝑘-means” is often used indifferently for any variant of 
the basic algorithm, in particular also for the Algorithm shown 
before [Forgy, 1965, Lloyd, 1982].
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k-means Clustering
Lloyd/Forgy Algorithm
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k-means Clustering – Lloyd/Forgy Algorithm
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k-means Clustering – Lloyd/Forgy Algorithm
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k-means Clustering – Lloyd/Forgy Algorithm

32



Introduction to Computer ScienceFall 2019

k-means Clustering – Lloyd/Forgy Algorithm
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k-means Clustering
MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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40



Introduction to Computer ScienceFall 2019

k-means Clustering – MacQueen Algorithm

41



Introduction to Computer ScienceFall 2019

k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering
MacQueen Algorithm

Alternative Ordering
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – MacQueen Algorithm
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k-means Clustering – Quality
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k-means Clustering – Quality
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k-means: Pros
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▪ Efficient: 𝑂(𝑘 ⋅ 𝑛) per iteration, number of iterations is usually in 
the order of 10.

▪ Easy to implement, thus very popular

▪ Only one parameter, easy to understand

▪ Well understood and researched

▪ Different variants exists
▪ Fuzzy clustering

▪ Variants without n-dimensional embedding
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k-means: Disadvantages
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▪ k-means converges towards a local minimum

▪ k-means (MacQueen-variant) is order-dependent

▪ Deteriorates with noise and outliers (all points are used to 
compute centroids)

▪ Clusters need to be convex and of (more or less) equal extension

▪ Number k of clusters is hard to determine

▪ Strong dependency on initial partition (in result quality as well as 
runtime)
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What to do?

67

How can we tackle the initialization 
problem?
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How can we tackle the initialization 
problem?

▪ Repeated runs

▪ Furthest-first initialization

▪ Subset Furthest-first initialization
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Insertion: Furthest First Initialization
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▪ Select a random point as start

▪ For each point, the minimum of its distances to the selected 
centers is maintained.

▪ While less than 𝑘 points selected, repeat:
▪ Selected point 𝑝 with the maximum distance to the existing centers

▪ Remove p from the not-yet-selected points and add it to the center points

▪ For each remaining not-yet-selected point q, replace the distance stored for 
q by the minimum of its old value and the distance from p to q.
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Furthest First Initialization: Visualization

70



Introduction to Computer ScienceFall 2019

Furthest First Initialization: Visualization

71



Introduction to Computer ScienceFall 2019

Furthest First Initialization: Visualization

72



Introduction to Computer ScienceFall 2019

Furthest First Initialization: Visualization

73



Introduction to Computer ScienceFall 2019

Furthest First Initialization: Visualization
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Update the minimum distances
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Furthest First Initialization: Visualization
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Furthest First Initialization: Visualization
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Learnings of this Section
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▪ What is Clustering?

▪ Basic idea for identifying “good” partitions into k clusters

▪ Selection of representative points

▪ Iterative refinement

▪ Local optimum

▪ k-means variants [Forgy, 1965, Lloyd, 1982, MacQueen, 1967]

▪ Different initialization methods
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▪ Clustering in General
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▪ Summary
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▪ Distances

▪ Features for Images

▪ Summary
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Recall: Clustering as a Workflow
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Similarities
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▪ Similarity (as given by some distance measure) is a central concept 
in data mining, e.g.:
▪ Clustering: group similar objects in the same cluster, separate dissimilar 

objects to different clusters

▪ Outlier detection: identify objects that are dissimilar (by some 
characteristic) from most other objects

▪ Definition of a suitable distance measure is often crucial for 
deriving a meaningful solution in the data mining task
▪ Images

▪ CAD objects

▪ Proteins

▪ Texts

▪ . . .
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Spaces and Distance Functions

83



Introduction to Computer ScienceFall 2019

Spaces and Distance Functions

84



Introduction to Computer ScienceFall 2019

Lecture Content
Clustering & Feature Spaces

85

▪ Clustering

▪ Clustering in General

▪ Partitional Clustering

▪ Visualization: Algorithmic Differences

▪ Summary

▪ Feature Spaces

▪ Distances

▪ Features for Images

▪ Summary



Introduction to Computer ScienceFall 2019

Categories of Feature Descriptors for Images
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▪ Distribution of colors

▪ Texture

▪ Shapes (contours)

▪ Many more …



Introduction to Computer ScienceFall 2019

Color Histogram
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▪ A histogram represents the distribution of colors over the pixels of 
an image

▪ Definition of an color histogram:
▪ Choose a color space (RGB, HSV, HLS, . . . )

▪ Choose number of representants (sample points) in the color space

▪ Possibly normalization (to account for different image sizes)
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Impact of Number of Representants
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Distances for Color Histograms
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Your Choice of a Distance Measure
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▪ There are hundreds of distance functions [Deza and Deza, 2009].
▪ For time series: DTW, EDR, ERP, LCSS, . . .

▪ For texts: Cosine and normalizations

▪ For sets – based on intersection, union, . . . (Jaccard)

▪ For clusters (single-link, average-link, etc.)

▪ For histograms: histogram intersection, “Earth movers distance”, quadratic 
forms with color similarity

▪ For proteins: Edit distance, structure, …

▪ With normalization: Canberra, … 

▪ Quadratic forms / bilinear forms: 𝑑(𝑥, 𝑦) ∶= 𝑥𝑇𝑀𝑦 for some 
positive (usually symmetric) definite matrix 𝑀.
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Learnings of this Section
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▪ Distances (𝐿𝑝-norms, weighted, quadratic form)

▪ Color histograms as feature (vector) descriptors for images

▪ Impact of the granularity of color histograms on similarity 
measures


