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About Me

" Richard Roettger:

= Computer Science (Technical University of Munich and thesis at the ICSI at
the University of California at Berkeley)

= PhD at the Max Planck Institute for Computer Science in Saarbrucken
= Since 2014: Assistant Professor at SDU

= Research Interests:
= Bioinformatics
= Machine Learning
= Clustering
= Biological Networks

= Part of the Slides are taken from Arthur Zimek
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Clustering & Feature Spaces
Learning Objectives

= Understand the problem of clustering in general

= Learn about k-means

* Understand the importance of feature spaces and
object representation

= Understand the influence of distance functions
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Clustering & Feature Spaces
Lecture Content

" Clustering
= Clustering in General
= Partitional Clustering
= Visualization: Algorithmic Differences
= Summary
= Feature Spaces
= Distances
" Features for Images

= Summary
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Purpose of Clustering

= |dentify a finite number of categories (classes, groups: clusters) in
a given dataset

= Similar objects shall be grouped in the same cluster, dissimilar
objects in different clusters

= “similarity” is highly subjective, depending on the application
scenario
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How Many Clusters?

Old Faithful Eruptions
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» Image taken from: http://fromdatawithlove.thegovans.us/
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http://fromdatawithlove.thegovans.us/

How Many Clusters?
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» Everitt, Brian S., et al. “Cluster Analysis”, 5th Edition (2011).
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How Many Clusters?
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» Everitt, Brian S., et al. “Cluster Analysis”, 5th Edition (2011).
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A Seemingly Simple Problem
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Figure 8.1. Different ways of clustering the same set of points.

* Each dataset can be clustered in many meaningful ways

= Highly problem depended
= Not known by the algorithm a priori

» Figure from Tan et al. [2006].
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About Clustering

“Clustering is the unsupervised machine-learning task of “grouping or
segmenting a collection of objects into subsets or ‘clusters’ such that
those within each cluster are more closely related to one another
than objects assigned to different clusters.”

= What is related? For example Customers?
= Age?
= Behavior?
= Kinship?
* Treatment of Outliers?
" |ll-posed Problem ...
= That means there exist multiple solutions
= What is the best?
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Overview of a Cluster Analysis
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) Large-Scale
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Overview of a Cluster Analysis
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Clustering & Feature Spaces
Lecture Content

" Clustering
= Clustering in General
= Partitional Clustering
= Visualization: Algorithmic Differences
= Summary
= Feature Spaces
= Distances
" Features for Images

= Summary
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Steps to Automatization: Cluster Criteria

" Cohesion: how strong are the cluster objects connected (how
similar, pairwise, to each other)?

= Separation: how well is a cluster separated from other clusters?

small within cluster large between cluster
distance distance
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Steps to Automatization: Cluster Criteria

" Cohesion: how strong are the cluster objects connected (how
similar, pairwise, to each other)?

= Separation: how well is a cluster separated from other clusters?

* There exist many other criteria, e.g., areas with

the same density.

* Itis important to choose a criterion which fits the
data!

distance distance
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Optimization

= Partitional clustering algorithms partition a dataset into k clusters,
typically minimizing some cost function
= no overlaps

= all points must be part of a cluster

" (compactness criterion), i.e., optimizing cohesion.
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Assumptions for Partitioning Clustering

= Central assumptions for approaches in this family are typically:
= number k of clusters known (i.e., given as input)
= clusters are characterized by their compactness

= compactness measured by some distance function (e.g., distance of all
objects in a cluster from some cluster representative is minimal)

= criterion of compactness typically leads to convex or even spherically
shaped clusters
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Construction of Central Points: Basics

= objects are points x = (x4, ..., xz) in Euclidean vector space R?
= dist = Euclidean distance (L)
= | centroid u.: mean vector of all points in cluster C
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Construction of Central Points: Basics

= objects are points x = (x4, ..., xz) in Euclidean vector space R?
= dist = Euclidean distance (L)
= | centroid u.: mean vector of all points in cluster C
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Cluster Criteria

12
= Measure for compactness: I
10
TD?(C) = ) dist(p.uc)® 9
pecC
(sum of squares)

= Measure of compactness
for a clustering:
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Cluster Criteria

12
= Measure for compactness: 1
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TD(C) = ) dist(p.uc)® 9
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(sum of squares) 7
6
5 A\
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Basic Algorithm: Clustering by Minimization of
Variance [Forgy, 1965, Lloyd, 1982]

= start with k (e.g., randomly selected) points as cluster
representatives (or with a random partition into k “clusters”)

" repeat:
1. assign each point to the closest representative

2. compute new representatives based on the given partitions (centroid of
the assigned points)

= until there is no change in assighment

(a) Initialization (b) First Iteration (c) Convergence
o) o m = A m =
O n O A
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k-means

k-means [MacQueen, 1967] is a variant of the basic algorithm:

= A centroid is immediately updated when some point changes its
assignment

= k-means has very similar properties, but the result now depends
on the order of data points in the input file

Note:

* The name “k-means” is often used indifferently for any variant of
the basic algorithm, in particular also for the Algorithm shown
before [Forgy, 1965, Lloyd, 1982].
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k-means Clustering
Lloyd/Forgy Algorithm




k-means Clustering — Lloyd/Forgy Algorithm
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k-means Clustering — Lloyd/Forgy Algorithm

recompute centroids:
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k-means Clustering — Lloyd/Forgy Algorithm

12 reassign points
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k-means Clustering — Lloyd/Forgy Algorithm

recompute centroids:

[
[~

—
—

=

== (5.0,2.7)

’:

1= (5.6,7.4)

—_— 2 b s L O =] 00 D
=+

A

1 2 3 4 5 6 7 8 9 101112

%'UNIVERSITY OF SOUTHERN DENMARK.DK



k-means Clustering — Lloyd/Forgy Algorithm

12 reassign points
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k-means Clustering — Lloyd/Forgy Algorithm

recompute centroids:

[
[~

—
—

=

1= (4.0,3.25)

oo

1= (6.75,8.0)

—_— 2 e B L v =] 00 D
i

A

1 2 3 4 5 6 7 8 9 101112

%'UNIVERSITY OF SOUTHERN DENMARK.DK



k-means Clustering — Lloyd/Forgy Algorithm

12 reassign points
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k-means Clustering — Lloyd/Forgy Algorithm

12 reassign points
11 no change

10 convergence!
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k-means Clustering
MacQueen Algorithm




k-means Clustering — MacQueen Algorithm
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k-means Clustering — MacQueen Algorithm

12 Centroids
11 (e.g.: from
10 previous iteration):
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k-means Clustering — MacQueen Algorithm

assign first point
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k-means Clustering — MacQueen Algorithm

12 assign second point
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k-means Clustering — MacQueen Algorithm

recompute centroids:
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k-means Clustering — MacQueen Algorithm

assign third point
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k-means Clustering — MacQueen Algorithm

recompute centroids:
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k-means Clustering — MacQueen Algorithm

12 assign fourth point
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k-means Clustering — MacQueen Algorithm

12 assing fifth point
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k-means Clustering — MacQueen Algorithm

12 recompute centroids:
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k-means Clustering — MacQueen Algorithm

12 reassign more points
11 possibly more iterations
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k-means Clustering — MacQueen Algorithm

reassign more points
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k-means Clustering
MacQueen Algorithm

Alternative Ordering




k-means Clustering — MacQueen Algorithm
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k-means Clustering — MacQueen Algorithm

12 Centroids
11 (e.g.: from
10 previous iteration):

.'E == (6.0,4.3)

S A u=(5.0,6.4)

—_— 2 e B L v =] 00 D
i

A

1 2 3 4 5 6 7 8 9 101112

%'UNIVERSITY OF SOUTHERN DENMARK.DK



k-means Clustering — MacQueen Algorithm

assign first point
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k-means Clustering — MacQueen Algorithm

assign second point
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k-means Clustering — MacQueen Algorithm

assign third point
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k-means Clustering — MacQueen Algorithm

assign fourth point
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k-means Clustering — MacQueen Algorithm

recompute centroids:
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k-means Clustering — MacQueen Algorithm

recompute centroids:
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k-means Clustering — MacQueen Algorithm

12 reasign more points
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k-means Clustering — MacQueen Algorithm

reasign more points
possibly more iterations
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k-means Clustering — MacQueen Algorithm

reasign more points
possibly more iterations
convergence
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k-means Clustering — Quality

=14 —10> + 325 — 1] =36 + 5L =41 L

(p1, ) = | 16
SSO(py.p2) = 14 =27+ 325 =3P =4+ L =4t
SSQ(p1,p3) = |4 =37+ 325 —4P =1+ % =13

( ) = |

SSQ(py,py) = [4 =112+ 325 =52 =94+ 3 = 12L&
TD* (C)) = 583

A SSQ(pa2,ps) = 675 =17 + |8 = 7> = £ + 1 =1+
A | | SSO(p2,pe) = 1675 — 6> + |8 — 8> = & +0= 1%
2 2 1 1
A A SSQ(p2.p7) = 1675 =12 + 18 — 8> = L +0= 1L
7 7
SSQ(pa.ps) = (675 — T2 + |8 — 9] = £ +1 =14+

— e —

+ TD? (C,) = 23

12345(137}391I{}11]2
First solution: 7D* = 615

Note: SSQ(u,p) = Euclidean(yi, p)* = L3(u, p).
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k-means Clustering — Quality

S8Q(p1;p1) = [10 — 10]> + |1 — 1]* =0

12 :
11 - TD(C;) =0
lg [ [ SSO(pa, pr) = 4.7 — 27 4+ |6.3 — 3)7 =~ 18.2
2 SSO(pa, p3) = 4.7 — 317 + |6.3 — 4)* =~ 8.2
> SSO(pr, py) = 4.7 — 1> + 16.3 — 5> =~ 15.4
6 2 SSO(ps, ps) = [4.7— 71> + 6.3 — 7|7 = 5.7
5@ L | SSO(pr, pg) = |4.7 — 6]> + 16.3 — 8> =~ 4.6
A - 3 | | SSO(pr, p7) = 4.7 — 7> + 16.3 — 8| =~ 8.2
3@ | | SSO(pa, p7) = 47— 717 + 6.3 — 9> = 12.6
2 TD* (Cy) == 72.86
m 2
| v

12345(137}891;31112
First solution: 7D* = 613
Second solution: TD? ~ 72.68

Note: SSQ(u,p) = Euclidean(yi, p)* = L3(u, p).
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k-means Clustering — Quality

12 -?-?Q(M1-.Fz}=|2—"| +|4—3| =0+4+1=1

11 ¢ SSQ(py,p3) =2 =3P+ 4 -4 =1+4+0=1

10 - SSO(py.py) = 12 =117+ |4 =57 =141 =2

% SSO(pa,py) = |7.4—10[7 6.6 —1]* = 612 +31 L = 3831
6 e SSO(pa, ps) = |7.4 — 717 + |6.6 — 7|* = % + % — %

5 A | | | SSO(p2.pe) = 7.4 — 6] +16.6 — 8> = 12 412 =32
4 -k T | SS0(pa,p7) = |74 — 7> + 16.6 — 8|> = % + 1?,‘ =23

% Bk | ] | SSO(p2,ps) = 174 =77+ /6.6 —9]* = 5t + 513 = 55

1

, TD* (C2) = 502

1234567}89101112
First solution: 7D* = 613
Second solution: TD? ~ 72.68
Optimal solution: 7D? = 543

Note: SSQ(u,p) = Euclidean(yi, p)* = L3(u, p).
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Clustering & Feature Spaces
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= Summary
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k-means: Pros

= Efficient: O(k - n) per iteration, number of iterations is usually in
the order of 10.

= Easy to implement, thus very popular
= Only one parameter, easy to understand
= Well understood and researched

= Different variants exists

= Fuzzy clustering
= Variants without n-dimensional embedding
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k-means: Disadvantages

= k-means converges towards a local minimum
* k-means (MacQueen-variant) is order-dependent

= Deteriorates with noise and outliers (all points are used to
compute centroids)

" Clusters need to be convex and of (more or less) equal extension
= Number k of clusters is hard to determine

= Strong dependency on initial partition (in result quality as well as
runtime)
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What to do?

How can we tackle the initialization
problem?
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What to do?

How can we tackle the initialization
problem?

" Repeated runs
= Furthest-first initialization
= Subset Furthest-first initialization
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Insertion: Furthest First Initialization

= Select a random point as start

" For each point, the minimum of its distances to the selected
centers is maintained.

= While less than k points selected, repeat:
= Selected point p with the maximum distance to the existing centers
= Remove p from the not-yet-selected points and add it to the center points

= For each remaining not-yet-selected point g, replace the distance stored for
g by the minimum of its old value and the distance from p to q.
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Furthest First Initialization: Visualization

12

11

10 Selected Centers: -

g Distances:

7 : ‘pl‘pZ‘p:}‘pél‘pﬁ‘pﬁ‘pT‘pS‘pg‘plﬂ‘pll‘plZ‘
: HEE R
4 Next Step:

3 m Start by selecting the center

% :;_. randomly.

12345678 9101112
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Furthest First Initialization: Visualization

12

11

10

9 Selected Centers: p2

g Distances:

6 &1. p1|p2|p3|p4|p5|p6|p7|p8|p9|p10|p1l|p12|

i XD
Next Step:

% 44_. :_._: Calculate the distances.

1 j

123456789101112
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Furthest First Initialization: Visualization

12
11
10
9 Selected Centers: p2
g Distances:
6 J. p1|p2|p3|p4|p5 [p6|p7 |p8| p9 [p10|p1l|pl2|
5 |1 |X|1]4.1[4.5]5(5.3[6]6.1]7.1|8.1] 8 |
4
Next Step:
g 44_. :_._: Selected Furthest Point.
1 j

123456789101112
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Furthest First Initialization: Visualization

12
11
18 Selected Centers: p2, pll

8 Distances:

7 : p1|p2|p3|p4|p5 [p6|p7 |p8| p9 [p10|p1l|pl2|
6 | 1[X]1]4.1/4.5/5[5.3/6[6.1]7.1| X | 8 |
9]

4 Next Step:

3 :‘. i Calculate the distance to new

% 4;. ® center.

12345678 9101112
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Furthest First Initialization: Visualization

12

11

18 Selected Centers: p2, pll

] Distances:

7 : pl(p2|p3|pd | pd|pb|p7|p8|pY pl0jpll|pl2
§ 1[X|14.1]45]51(5.3[616.1/7.1] X | 8
1 8.2|X|7.1]7.6/6.7/5.872[21/ 21 [ X | 1
3 :—. u Next Step:

% ;’ ® Update the minimum distances

123456789101112
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Furthest First Initialization: Visualization

12
11
10
9 Selected Centers: p2, pll
g Distances:
6 J. p1|p2|p3|p4|p5 |p6|p7|P8|P9|p10|p11|p12
5 [ 1|X[1]41f45]55.3[21)2] 1 | X | 1|
% il Next Step:
2 44_. :_. 12 Select next center.
1 j

123456789101112
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Furthest First Initialization: Visualization

12

11

10

9 Selected Centers: p2, pll, p7

8 Distances:

T eee p1|p2|p3| p4 | p5 [p6|p7|p8 |p9|p10|p11|p12|
i | 1]X|1]41[455|X[21]2] 1 | X |1
% ! Next Step:

2 ;0 :. i Repeat.

1 i
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Furthest First Initialization: Visualization

12 @ o1
11

&1. Same situation as before with

two outliers

12345678 9101112
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Furthest First Initialization: Visualization

12
11
10
9
&8
7 :
g Outliers tend to be chosen
4
3 :‘.‘:
2 4—0
1 J

12345678 9101112
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Learnings of this Section

* What is Clustering?

= Basic idea for identifying “good” partitions into k clusters

= Selection of representative points

" |terative refinement

" Local optimum

= k-means variants [Forgy, 1965, Lloyd, 1982, MacQueen, 1967]
= Different initialization methods
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Clustering & Feature Spaces
Lecture Content

" Clustering
= Clustering in General
= Partitional Clustering
= Visualization: Algorithmic Differences
= Summary
= Feature Spaces
= Distances
" Features for Images

= Summary
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Recall: Clustering as a Workflow

@ €)
g
5 W

Preprocessing

AY

Proximity
Calculation

Evaluation

Clustering

) Continous Data
) Categorical Data

D Feature Selection
D Feature Extraction

P Normalization ) Mixed Data
Standardization }Specialized
P Missing Values Measures

P Internal Indices
D External Indices
P Relative Indices

P Parameter
Optimization

) k-Means-Based
D Hierarchical

) Graph-Based

) Density-Based
} Model-Based

) Large-Scale
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Similarities

= Similarity (as given by some distance measure) is a central concept
in data mining, e.g.:

= Clustering: group similar objects in the same cluster, separate dissimilar
objects to different clusters

= Qutlier detection: identify objects that are dissimilar (by some
characteristic) from most other objects
= Definition of a suitable distance measure is often crucial for
deriving a meaningful solution in the data mining task

= |mages
CAD objects
Proteins

Texts

4 ' ‘; ; M . :lc
3 - e e
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Spaces and Distance Functions

Common distance measure for (Euclidean) feature vectors:
Lp-norm

1
distp(p,q) = (Ipr —a@1|” + P2 — @2l + ...+ |pn — @ul")?

Euclidean norm Manhattan norm Maximum norm

(Lo): (L1): (Loo, a@lsO: Lmax,
supremum dist.,
Chebyshev dist.)

q ' q

3 > 5
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Spaces and Distance Functions

weighted Euclidean norm: quadratic form:
dist(p, q) = (wilp1 — 1>+ dist(p,q) =
W2|p2—£]212—|—...—I-Wn‘pn—qn’z) ((p_Q)M(p_Q)T)

B | —
B9 |

q
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Clustering & Feature Spaces
Lecture Content

" Clustering
= Clustering in General
= Partitional Clustering
= Visualization: Algorithmic Differences
= Summary
= Feature Spaces
= Distances
" Features for Images

= Summary
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Categories of Feature Descriptors for Images

= Distribution of colors
= Texture

= Shapes (contours)

= Many more ...
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Color Histogram

Ll | |

= A histogram represents the distribution of colors over the pixels of
an image

e |

= Definition of an color histogram:
= Choose a color space (RGB, HSV, HLS, .. .)

= Choose number of representants (sample points) in the color space

= Possibly normalization (to account for different image sizes)
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Impact of Number of Representants
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Impact of Number of Representants
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Impact of Number of Representants
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Impact of Number of Representants
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Impact of Number of Representants
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Impact of Number of Representants

The histogram for each image is essentially a visualization
of a vector:

(0.77,0,0,0,0.08,0,0.15, 0)
(0.9,0,0,0,0.05,0,0.05, 0) (0.955,0,0,0,0.045,0,0,0)
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Impact of Number of Representants

rOgObEgObily 0b0g 1bigl bilg1bEg 20y 2 bilg2 bl g0 g0bil gObElg 16l g1 bilg bRl g2bal g 2bilg 2@ g0 bEg0bi2g0be2 g 1biRg Lbi2g 1 b g2 bR g2 bz g2b2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Impact of Number of Representants




Distances for Color Histograms

Euclidean distance for images P and Q using the color
histograms hp and hp:

dist(P, Q) = \/ (hp — hg) - (hp — ho)"

- - dist(RED, PINK) = v/2

L) LW dist(RED, BLUE) = /2

(1,0,0)  (0,1,0)  (0,0,1) dist(BLUE, PINK) = v/2

A ‘psychologic’ distance would consider that red is (in our
perception) more similar to pink than to blue.
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Distances for Color Histograms

dist(P, Q) = \/ (hp — hg) - (hp — ho)"

dist(RED, PINK) = 1/((1,0,0) — (0,1,0)) - ((1,0,0) — (0,1,0))T
=+/(1,-1,0) - (1,—1,0)7

=+/(1-1+(=1)-(=1)+0-0)
— /2
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Distances for Color Histograms

Quadratic form with ‘psychological’ similarity matrix

1 ain
a1 1 ... 2 _
A= . . .| where g;; (= aj;) describe the
] oo 1]
subjective similarity of the features i and j in the color
histogram:

dist4 (P, Q) = \/ (hp — hg) - A - (hp — hg)T

I 09 0 dist(RED, PINK) = /0.2
A=109 1 0
0 0 1 dist(RED, BLUE) = v2
dist(BLUE, PINK) = v/2

’,G'UNIVERSITY OF SOUTHERN DENMARK.DK



Clustering & Feature Spaces
Lecture Content
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= Summary
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= Summary
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Your Choice of a Distance Measure

= There are hundreds of distance functions [Deza and Deza, 2009].
= For time series: DTW, EDR, ERP, LCSS, ...
= For texts: Cosine and normalizations
= For sets — based on intersection, union, . .. (Jaccard)
= For clusters (single-link, average-link, etc.)

= For histograms: histogram intersection, “Earth movers distance”, quadratic
forms with color similarity

= For proteins: Edit distance, structure, ...
= With normalization: Canberra, ...

= Quadratic forms / bilinear forms: d(x,y) := xT My for some
positive (usually symmetric) definite matrix M.
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Learnings of this Section

= Distances (L,-norms, weighted, quadratic form)

" Color histograms as feature (vector) descriptors for images

= |mpact of the granularity of color histograms on similarity
measures
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