
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

October 7, 2019
Marco Chiarandini

DM534, Introduction to Computer Science Autumn 2019

Lecture Notes on Machine Learning

Contents

1 Linear Regression 1
1.1 Single input variable . 1
1.2 Multiple input variables . 2
1.3 Higher degree polynomial functions . 3

2 Artificial Neural Networks 3
2.1 Artificial neuron models: perceptron and sigmoid neurons 3

2.1.1 Perceptrons . 3
2.1.2 Sigmoid neurons . 4
2.1.3 Linear separators . 6

2.2 Multilayer neural networks . 6

In the task of machine learning that deals with supervised learning, we are given a set of
observations consisting of values of some input variables (features) and values of a corresponding
response, and the goal is to determine whether there is an association (for example, a function)
between those input variables and the response. In other terms, we wish to determine an accurate
model to describe those training data and then to use this model to predict the response on a new
unseen input. Here, we look at two types of such models: linear regression and neural networks.

1 Linear Regression

1.1 Single input variable

Consider an event y ∈ Y that we assume depends on a variable x ∈ X . For example, let y be the
value of the final grade of a student in an exam and x the number of hours the student devoted
to the study of the subject.

A learning model on a set of training samples {(x1, y1), (x2, y2), . . . , (xm, ym)} seeks a goal
function g : X → Y that best approximates an unknown function f from which the training set
is assumed to have been generated. Then, for all those situations, in which an input x is readily
available, but the output y is unknown, we can predict y using ŷ = g(x) where ŷ represents the
resulting prediction for y using the estimated function g.

In linear regression the set of candidate functions H, from which g has to be selected, is
represented by all functions h of the form ha,b(x) := ax+ b. Hence, the form of g is fixed while
the parameters a and b can be adjusted to find a function from the family H that for any input
x well approximates the response y.

The most common way to evaluate a function h ∈ H on any data point (x, y) is the squared
error that accounts for the loss between the measured value y and the predicted value ŷ = ha,b(x):

L(y, ha,b(x)) = (y − ŷ)2 = (y − ha,b(x))2. (1)

Here, we considered (x, y) as variables to write a general model that is valid both for data already
observed belonging to the training set and for data not yet observed like those we might be using

1

DM534 – Fall 2019 Lecture Notes

for the final assessment of the model. On the given set of m training samples we can evaluate a
function ha,b by calculating the total training error :

L̂a,b =

m∑
i=1

L̂(yi, ha,b(xi)) =

m∑
i=1

(yi − ha,b(xi))2 =
m∑
i=1

(yi − ŷi)2. (2)

Note that in Eq. (2), we used the hat symbol to indicate that, differently from Eq. (1), the values
of the variables x and y are now known. (Hence, the hat symbol here has nothing to do with
the symbol you might have seen in the gymnasium for tvær vektor.)

Finding the function g ∈ H that minimizes L̂a,b corresponds to finding the values of the
parameters a and b for which L̂a,b is minimum. We could proceed by trial and error. However,
in this case we can use Calculus and the theory of partial derivatives to find that the values of
a and b that minimize L̂a,b can be expressed in closed form. They are given in the slides. We
do not need to remember those formulas as any software, including several Python modules (eg,
scikit-learn), have them already implemented in their methods.

The linear model above can be enhanced by including:

• multiple input variables (features) (x1, x2, . . . , xp)

• higher degree terms to represent polynomial functions

• basis functions (generalization of polynomial functions, not treated here).

1.2 Multiple input variables

We consider now the case where instead of one single input variable we have several. In the
exam grade example, beside the number of study hours we might suspect that also the age of the
student has an influence on the final grade. So the data set consists of the values of two input
variables, the number of study hours and the age, and the values of the corresponding response.

Consistently with the previous section, we use m to represent the number of distinct data
points, or observations, in our training sample. We let p denote the number of variables that
are available for use in making predictions. So, in our example, p = 2 and, if we collected these
measurements for 100 students, then m = 100.

We let xij represent the value of the jth variable for the ith observation, where i = 1, 2, . . . ,m
and j = 1, 2, . . . , p. Throughout this document i is used to index the samples or observations
(from 1 to m) and j is used to index the variables (from 1 to p).

We can write the measurements of an observation i for i = 1, . . . ,m as a vector ~xi of length
p, containing the p variable values for the ith observation. That is,1

~xi =
[
xi1 xi2 . . . xip

]
.

For example, for the exam grade data, ~xi is a vector of length 2, consisting of the values of age
and study hours for the ith individual.

Then our observed data consists of {(~x1, y1), (~x2, y2), ..., (~xm, ym)}, where each ~xi is a vector
of length p. (If p = 1, then xi is simply a scalar and the notation falls back to the one used in
the previous section.)

We can subdivide the learning task in three parts.
1Vectors are by convention represented as columns and the T notation is used to denote the transpose of a

vector. However, in this document we represent vectors as row vectors.

2

DM534 – Fall 2019 Lecture Notes

1. Representation of the hypothesis set H. In linear regression, H is made by all linear models
of the p features:

h(x1, x2, . . . , xp) := θ0 + θ1x1 + θ2x2 + · · ·+ θpxp
= hθ0,θ2,θ2,...,θp(x1, x2, . . . , xp)

(3)

Eq. (3) can be written in a simpler way using the vector notation introduced above
and recalling the definition of scalar product between vectors. Define x0 = 1, ~x =[
x0, x1, x2, . . . , xp

]
and ~θ =

[
θ0, θ1, θ2, . . . , θp

]
, then we can rewrite (3) as:

h~θ(~x) =
~θ · ~x =

p∑
j=0

θjxj

The parameter θ0 defining the intercept is called in machine learning the bias. The number
of θ coefficients to determine for this linear model is p+ 1.

For the exam grade case:

h(x1, x2) := θ0 + θ1x1 + θ2x2 =
2∑
j=0

θjxj = ~θ · ~x = h~θ(~x) = hθ0,θ2,θ2(x1, x2)

and the number of θ coefficients is 3.

2. Evaluation: The loss function can be defined as:

L(y, h~θ(~x)) =
(
y − h~θ(~x)

)2
3. Optimization: We calculate the loos function on the training samples as the sum of square

errors:

L̂~θ =

p∑
i=1

(
yi − h~θ(~xi)

)2
and we look for the coefficients ~θ that minimize L̂~θ. In mathematical notation:

min
~θ
L̂~θ.

Again, with notions from Calculus and Linear Algebra the optimal values for ~θ can be
expressed in closed form as a function of the training sample data.

1.3 Higher degree polynomial functions

1. Representation of the hypothesis space H. Let ~xT =
[
1, x, x2, . . . , xp

]
then

h~θ(x) = poly(~θ, ~x) = θ0 + θ1x+ · · ·+ θpx
p

where p ≤ m− 1. Each term acts like a different variable in the previous case.

2. Evaluation: the loss function can be redefined as

L(y, h~θ(~x)) =
(
y − poly(~θ, ~x)

)2
.

3. Optimization: L̂ takes the form:

L̂(~θ) =

m∑
i=1

(
yi − poly(~θ, ~xi)

)2
,

which is a function of p + 1 coefficients θ0, · · · , θp. Minimizing in ~θ the optimal value for
these coefficients can again be expressed in closed form.

3

DM534 – Fall 2019 Lecture Notes

2 Artificial Neural Networks

2.1 Artificial neuron models: perceptron and sigmoid neurons

2.1.1 Perceptrons

A perceptron is a type of artificial neuron. It takes several binary inputs, x1, x2, . . . , xp and
produces a single binary output.

Input #1

Input #2

Input #3

Input #4

Output

Figure 1: A Perceptron.

In the example shown in Figure 1 the perceptron has four inputs, x1, x2, x3, x4. In general it
could have more or fewer inputs. In the 1950s and 1960s Warren McCulloch and Walter Pitts
and later Frank Rosenblatt proposed a simple rule to compute the output. They introduced
weights, w1, w2, . . . , wp, real numbers expressing the importance of the respective inputs to the
output. The neuron’s output, 0 or 1, is determined by whether the weighted sum of the inputs,∑p

j=1wjxj , is less than or greater than some threshold value. Just like the weights, the threshold
is a real number which is a parameter of the neuron. To put it in more precise algebraic terms:

output :=

{
0 if

∑p
j=1wjxj ≤ w0

1 if
∑p

j=1wjxj > w0

(4)

We can simplify the way we describe perceptrons. The condition
∑p

j=1wjxj > w0 is cum-
bersome, and we can make two notational changes to simplify it. The first change is to write∑p

j=1wjxj as a dot product, ~w · ~x =
∑p

j=1wjxj , where ~w and ~x are vectors whose components
are the weights and inputs, respectively. The second change is to denote the threshold as w0, to
bring it to the left side of the inequality, to define x0 = −1 and to redefine the vectors ~w and ~x
such that they include also w0 and x0, respectively. Thus, we can finally write:

output :=

{
0 if ~w · ~x ≤ 0

1 if ~w · ~x > 0
(5)

The threshold w0 has the same role as the intercept in the linear regression (see also Sec. 2.1.3).
For consistency with the theory of linear regression we can represent w0 by the bias w′0, and
set −w0 = w′0 and x0 = 1. Obviously, introducing the bias is only a small change in how
we describe perceptrons, but it simplifies more advanced theory on neural networks and it is
therefore preferred to the use of a threshold. Note also that programs to compute the weights
of neural networks return the bias rather than the threshold.2 From the point of view of the
application, you can think of the bias as a measure of how easy it is to get the perceptron to
output a 1. Or to put it in more biological terms, the bias is a measure of how easy it is to
get the perceptron to fire. For a perceptron with a really big bias, it’s extremely easy for the
perceptron to output a 1. But if the bias is very negative, then it’s difficult for the perceptron
to output a 1.

2However, in our exercises where calculations are to be carried out by hand we will consistently use the
threshold notation.

4

DM534 – Fall 2019 Lecture Notes

The perceptron recalled above is only one type of artificial neuron. In class, we discussed
also the sigmoid (or logistic) neuron. Sigmoid neurons are similar to perceptrons, but modified
so that small changes in their weights and bias cause only a small change in their output. That’s
a crucial fact to allow a network of sigmoid neurons to learn.

2.1.2 Sigmoid neurons

Sigmoid neurons can be depicted in the same way as we depicted perceptrons in Figure 1.
Just like a perceptron, the sigmoid neuron has inputs, x1, x2, . . . , xp. But instead of be-

ing just 0 or 1, these inputs can also take on any values between 0 and 1. So, for instance,
0.638, 0.432, . . . , 0.578 is a valid input for a sigmoid neuron. Also just like a perceptron, the
sigmoid neuron has weights for each input, w1, w2, . . . , wp and an overall bias, w′0 for x0 = 1.
But the output is not 0 or 1. Instead, it is σ(~w · ~x), where σ is called the sigmoid or logistic
function, and is defined by:

σ(z) :=
1

1 + e−z

To put it all a little more explicitly, the output of a sigmoid neuron with inputs x1, x2, . . . , xp,
weights w1, w2, . . . , wp and threshold w0 = −w′0 is

output :=
1

1 + exp
(
−
∑p

j=1wjxj + w0

)
To understand the similarity to the perceptron model, suppose z := ~w · ~x is a large positive
number. Then e−z ≈ 0 and so σ(z) ≈ 1. In other words, when z := ~w ·~x is large and positive, the
output from the sigmoid neuron is approximately 1, just as it would have been for a perceptron.
Suppose on the other hand that z := ~w · ~x is very negative. Then e−z = ∞, and σ(z) ≈ 0. So
when z := ~w · ~x is very negative, the behavior of a sigmoid neuron also closely approximates a
perceptron. It is only when z := ~w · ~x is of modest size that there’s much deviation from the
perceptron model.

How should we interpret the output from a sigmoid neuron? Obviously, one big difference
between perceptrons and sigmoid neurons is that sigmoid neurons don’t just output 0 or 1. They
can have as output any real number between 0 and 1, so, for example, values such as 0.173 and
0.689 are legitimate outputs. This can be useful, for example, if we want to use the output
value to represent the average intensity of the pixels in an image input to a neural network. But
sometimes it can be a trouble. Suppose we want the output from the network to indicate either
“the input image is a 9” or “the input image is not a 9”. Obviously, it would be easiest to do this
if the output was a 0 or a 1, as in a perceptron. But in practice we can set up a convention to
deal with this, for example, by deciding to interpret any output of at least 0.5 as indicating a
“9”, and any output less than 0.5 as indicating “not a 9”.

What about the algebraic form of σ? How can we understand that? In fact, the exact form
of σ is not so important — what really matters is the shape of the function when plotted. The
shape is shown in Figure 2, left. This shape is a smoothed out version of a step function shown
in Figure 2, right. If σ had in fact been a step function, then the sigmoid neuron would be a
perceptron, since the output would be 1 or 0 depending on whether ~w ·~x was positive or negative.
By using the actual σ function we get a smoothed out perceptron. Indeed, it is the smoothness
of the σ function that is the crucial fact, not its detailed form.

5

DM534 – Fall 2019 Lecture Notes

Figure 2: The graph of a sigmoid function, left, and of a step function, right.

2.1.3 Linear separators

In a binary classification task, the single neuron implements a linear separator in the space of
the input variables. Indeed, for a perceptron the decision boundary is

p∑
j=1

wjxj = w0

That is, if the left hand side of the equation above is less or equal than the threshold then the
neuron outputs 0, otherwise it outputs 1.

In the case of two inputs, x1 and x2, this becomes:

w1x2 + w2x2 = w0,

which corresponds to the equation of a line in the Cartesian plane:

x2 = −
w1

w2
x1 +

1

w2
w0

(you might have seen this with y in place of x2 and x in place of x1.) In 3 dimensions the
equation:

w1x2 + w2x2 + w3x3 = constant

represents a plane. In more dimensions the equation represents what is called an hyperplane. In
all cases, the equation remains linear in ~x and therefore it is called linear separator.

A sigmoid neuron uses most commonly the value 0.5 as the discriminant for outputting 1 or
0. Then the decision boundary becomes:

1

1 + exp
(
−
∑p

j=1wjxj − w′0
) = 0.5

Solving in ~x we obtain an equation of the form:

p∑
j=1

wjxj = constant+ w′0 = constant

which is again linear in ~x. Therefore, also the single sigmoid neuron is a linear separator.

6

DM534 – Fall 2019 Lecture Notes

Output

Hidden
layer

Input
layer

Output
layer

Figure 3: The structure of neural networks.

2.2 Multilayer neural networks

Figure 3 shows a general structure of a feed-forward neural network. Somewhat confusingly, and
for historical reasons, such multiple layer networks are sometimes called multilayer perceptrons
or MLPs, despite being made up of sigmoid neurons, not perceptrons. The latter use a step
function as activation function while the former use a sigmoid (also called logistic) function.

The leftmost layer in this network is called the input layer and the neurons within the layer
are called input neurons. The notation for input neurons, in which we have an output, but no
inputs, is a shorthand. It doesn’t actually mean a perceptron with no inputs. It’s better to think
of input neurons as not really being neurons at all, but rather special units which are simply
defined to output the desired values, which are the inputs to the network. The rightmost or
output layer contains the output neurons, or, as in this case, a single output neuron. The middle
layer is called a hidden layer, since the neurons in this layer are neither inputs nor outputs. The
term “hidden” perhaps sounds a little mysterious but it really means nothing more than “not an
input or an output”. The network in the figure has just a single hidden layer, but some networks
can have multiple hidden layers.

Most commonly, in computer programs that implement neural networks, all nodes of the
hidden layers are sigmoid neurons whose outputs are left unchanged from the sigmoid function
and lay in the interval [0, 1]. The output neurons are, instead, defined depending on the task.
In a binary classification task, a single sigmoid neuron can provide a probability measure for the
prediction to be one or the other class. In multi-way classification, the output of a single sigmoid
neuron can be assessed by a partition of the interval [0, 1]. Alternatively, there can be as many
sigmoid neurons as there are classes and the prediction decided by the neuron that returns the
largest value. In a regression task, a single output neuron can implement an identity function or,
equivalently, a linear function. In general, these decisions that determine the actual structure or
architecture of the neural network are passed as parameters to the programs.

References

The part on the neural networks is largely based on: Michael A. Nielsen, “Neural Networks and
Deep Learning”, Determination Press, 2015. http://neuralnetworksanddeeplearning.com/
chap1.html

7

