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Similarity

I Similarity (as given by some distance measure) is a
central concept in data mining, e.g.:
I clustering: group similar objects in the same cluster,

separate dissimilar objects to different clusters
I outlier detection: identify objects that are dissimilar (by

some characteristic) from most other objects
I definition of a suitable distance measure is often crucial

for deriving a meaningful solution in the data mining
task

I images

I CAD objects

I proteins

I texts

I . . .
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Spaces and Distance Functions

Common distance measure for (Euclidean) feature vectors:
LP-norm

distP(p, q) =
(
|p1 − q1|P + |p2 − q2|P + . . .+ |pn − qn|P

) 1
P

Euclidean norm
(L2):

Manhattan norm
(L1):

Maximum norm
(L∞, also: Lmax,
supremum dist.,
Chebyshev dist.)
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Spaces and Distance Functions

weighted Euclidean norm:
dist(p, q) =

(
w1|p1 − q1|2+

w2|p2 − q2|2 + . . .+ wn|pn − qn|2
) 1

2

quadratic form*:
dist(p, q) =
((p− q)M(p− q)T)

1
2

*note that we assume vectors to be row vectors here
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Categories of Feature Descriptors for Images

I distribution of colors
I texture
I shapes (contoures)
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Color Histogram

I a histogram represents the distribution of colors over
the pixels of an image

I definition of an color histogram:
I choose a color space (RGB, HSV, HLS, . . . )
I choose number of representants (sample points) in the

color space
I possibly normalization (to account for different image

sizes)
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Color Space Example: RGB cube
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Impact of Number of Representants

original images in full RGB space (2563 = 16, 777, 216)
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Impact of Number of Representants

23 33

43 163
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Impact of Number of Representants

The histogram for each image is essentially a visualization
of a vector:
(0.77, 0, 0, 0, 0.08, 0, 0.15, 0) (0.8, 0, 0, 0, 0.11, 0, 0.09, 0)
(0.9, 0, 0, 0, 0.05, 0, 0.05, 0) (0.955, 0, 0, 0, 0.045, 0, 0, 0)
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Distances for Color Histograms

Euclidean distance for images P and Q using the color
histograms hP and hQ:

dist(P,Q) =
√

(hP − hQ) · (hP − hQ)T

(1, 0, 0) (0, 1, 0) (0, 0, 1)

dist(RED,PINK) =
√

2

dist(RED,BLUE) =
√

2

dist(BLUE,PINK) =
√

2

A ‘psychologic’ distance would consider that red is (in our
perception) more similar to pink than to blue.
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Example for the Distance Computation of
Histograms

dist(P,Q) =
√
(hP − hQ) · (hP − hQ)T

dist(RED,PINK) =
√

((1, 0, 0)− (0, 1, 0)) · ((1, 0, 0)− (0, 1, 0))T

=
√

(1,−1, 0) · (1,−1, 0)T

=
√
(1 · 1 + (−1) · (−1) + 0 · 0)

=
√

2
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Distances for Color Histograms

Quadratic form with ‘psychological’ similarity matrix

A =


1 a12 . . .

a21 1 . . .
...

. . .
...

. . . 1

 where aij ( ?
= aji) describe the

subjective similarity of the features i and j in the color
histogram:

distA(P,Q) =
√
(hP − hQ) · A · (hP − hQ)T

A′ =

 1 0.9 0
0.9 1 0
0 0 1

 dist(RED,PINK) =
√

0.2

dist(RED,BLUE) =
√

2

dist(BLUE,PINK) =
√

2
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Your Choice of a Distance Measure

There are hundreds of distance functions [Deza and Deza,
2009].
I For time series: DTW, EDR, ERP, LCSS, . . .
I For texts: Cosine and normalizations
I For sets – based on intersection, union, . . . (Jaccard)
I For clusters (single-link, average-link, etc.)
I For histograms: histogram intersection, “Earth movers

distance”, quadratic forms with color similarity
I With normalization: Canberra, . . .
I Quadratic forms / bilinear forms: d(x, y) := xTMy for

some positive (usually symmetric) definite matrix M.

Note that:
Choosing the appropriate distance function can be seen as
a part of “preprocessing”.
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Summary

You learned in this section:
I distances (Lp-norms, weighted, quadratic form)
I color histograms as feature (vector) descriptors for

images
I impact of the granularity of color histograms on

similarity measures
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Purpose of Clustering

I identify a finite number of categories (classes, groups:
clusters) in a given dataset

I similar objects shall be grouped in the same cluster,
dissimilar objects in different clusters

I “similarity” is highly subjective, depending on the
application scenario
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A Dataset can be Clustered in Different
Meaningful Ways

(Figure from Tan et al. [2006].)
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Criteria of Quality: Cohesion and Separation

I cohesion: how strong are the cluster objects connected
(how similar, pairwise, to each other)?

I separation: how well is a cluster separated from other
clusters?

small within cluster distances large between cluster distances
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Optimization of Cohesion

Partitional clustering algorithms partition a dataset into k
clusters, typically minimizing some cost function
(compactness criterion), i.e., optimizing cohesion.
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Assumptions for Partitioning Clustering

Central assumptions for approaches in this family are
typically:
I number k of clusters known (i.e., given as input)
I clusters are characterized by their compactness
I compactness measured by some distance function

(e.g., distance of all objects in a cluster from some
cluster representative is minimal)

I criterion of compactness typically leads to convex or
even spherically shaped clusters
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Construction of Central Points: Basics

I objects are points x = (x1, . . . , xd) in Euclidean vector
space Rd, dist = Euclidean distance (L2)

I centroid µC: mean vector of all points in cluster C

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

µCi =
1

|Ci| ·
∑

o∈Ci
o
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Construction of Central Points: Basics

I measure of compactness for
a cluster C:

TD2(C) =
∑
p∈C

dist(p, µC)
2

(a.k.a. SSQ: sum of
squares)

I measure of compactness for
a clustering

TD2(C1,C2, . . . ,Ck) =

k∑
i=1

TD2(Ci)

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12
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Basic Algorithm [Forgy, 1965, Lloyd, 1982]

Algorithm 2.1 (Clustering by Minimization of Variance)

I start with k (e.g., randomly selected) points as cluster
representatives (or with a random partition into k
“clusters”)

I repeat:
I assign each point to the closest representative
I compute new representatives based on the given

partitions (centroid of the assigned points)
I until there is no change in assignment
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k-means

k-means [MacQueen, 1967] is a variant of the basic
algorithm:
I a centroid is immediately updated when some point

changes its assignment
I k-means has very similar properties, but the result now

depends on the order of data points in the input file

Note that:
The name “k-means” is often used indifferently for any
variant of the basic algorithm, in particular also for
Algorithm 2.1 [Forgy, 1965, Lloyd, 1982].

36



DM534

Arthur Zimek

Color Histograms as
Feature Spaces for
Representation of
Images

A First Glimpse on
Clustering

General Purpose of
Clustering

Partitional Clustering

Algorithm

Visualization:
Algorithmic
Differences

Summary

References

Outline

Color Histograms as Feature Spaces for Representation of Images

A First Glimpse on Clustering
General Purpose of Clustering
Partitional Clustering
Algorithm
Visualization: Algorithmic Differences
Summary

37



DM534

Arthur Zimek

Color Histograms as
Feature Spaces for
Representation of
Images

A First Glimpse on
Clustering

General Purpose of
Clustering

Partitional Clustering

Algorithm

Visualization:
Algorithmic
Differences

Summary

References

k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

38



DM534

Arthur Zimek

Color Histograms as
Feature Spaces for
Representation of
Images

A First Glimpse on
Clustering

General Purpose of
Clustering

Partitional Clustering

Algorithm

Visualization:
Algorithmic
Differences

Summary

References

k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 recompute centroids:

µ ≈ (6.0, 4.3)

µ ≈ (5.0, 6.4)
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k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12
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8
9
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12 reassign points
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k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 recompute centroids:

µ ≈ (5.0, 2.7)

µ ≈ (5.6, 7.4)
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k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 recompute centroids:

µ ≈ (4.0, 3.25)

µ ≈ (6.75, 8.0)
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k-means Clustering – Lloyd/Forgy Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 reassign points

no change
convergence!
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k-means Clustering – MacQueen Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12
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k-means Clustering – MacQueen Algorithm

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 Centroids

(e.g.: from
previous iteration):

µ ≈ (6.0, 4.3)

µ ≈ (5.0, 6.4)
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k-means Clustering – Quality

1 2 3 4 5 6 7 8 9 101112

1
2
3
4
5
6
7
8
9

10
11
12

1

2

3

4

5

6 7

8

µ2

µ1

SSQ(µ1, p1) = |4− 10|2 + |3.25− 1|2 = 36 + 5 1
16 = 41 1

16
SSQ(µ1, p2) = |4− 2|2 + |3.25− 3|2 = 4 + 1

16 = 4 1
16

SSQ(µ1, p3) = |4− 3|2 + |3.25− 4|2 = 1 + 9
16 = 1 9

16
SSQ(µ1, p4) = |4− 1|2 + |3.25− 5|2 = 9 + 3 1

16 = 12 1
16

TD2(C1) = 58 3
4

SSQ(µ2, p5) = |6.75− 7|2 + |8− 7|2 = 1
16 + 1 = 1 1

16
SSQ(µ2, p6) = |6.75− 6|2 + |8− 8|2 = 9

16 + 0 = 9
16

SSQ(µ2, p7) = |6.75− 7|2 + |8− 8|2 = 1
16 + 0 = 1

16
SSQ(µ2, p8) = |6.75− 7|2 + |8− 9|2 = 1

16 + 1 = 1 1
16

TD2(C2) = 2 3
4

First solution: TD2 = 61 1
2

Second solution: TD2 ≈ 72.68
Optimal solution: TD2 = 54 2

5

Note: SSQ(µ, p) = Euclidean(µ, p)2 = L2
2(µ, p).
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1
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1

2

3

4

5

6 7

8

µ2

µ1

SSQ(µ1, p1) = |10− 10|2 + |1− 1|2 = 0
TD2(C1) = 0

SSQ(µ2, p2) ≈ |4.7− 2|2 + |6.3− 3|2 ≈ 18.2
SSQ(µ2, p3) ≈ |4.7− 3|2 + |6.3− 4|2 ≈ 8.2
SSQ(µ2, p4) ≈ |4.7− 1|2 + |6.3− 5|2 ≈ 15.4
SSQ(µ2, p5) ≈ |4.7− 7|2 + |6.3− 7|2 ≈ 5.7
SSQ(µ2, p6) ≈ |4.7− 6|2 + |6.3− 8|2 ≈ 4.6
SSQ(µ2, p7) ≈ |4.7− 7|2 + |6.3− 8|2 ≈ 8.2
SSQ(µ2, p7) ≈ |4.7− 7|2 + |6.3− 9|2 ≈ 12.6
TD2(C2) ≈ 72.86

First solution: TD2 = 61 1
2

Second solution: TD2 ≈ 72.68

Optimal solution: TD2 = 54 2
5

Note: SSQ(µ, p) = Euclidean(µ, p)2 = L2
2(µ, p).
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k-means Clustering – Quality

1 2 3 4 5 6 7 8 9 101112

1
2
3
4
5
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7
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9
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11
12

1

2

3

4

5

6 7

8

µ2

µ1

SSQ(µ1, p2) = |2− 2|2 + |4− 3|2 = 0 + 1 = 1
SSQ(µ1, p3) = |2− 3|2 + |4− 4|2 = 1 + 0 = 1
SSQ(µ1, p4) = |2− 1|2 + |4− 5|2 = 1 + 1 = 2
TD2(C1) = 4

SSQ(µ2, p1) = |7.4−10|2 +|6.6−1|2 = 6 19
25 +31 9

25 = 38 3
25

SSQ(µ2, p5) = |7.4− 7|2 + |6.6− 7|2 = 4
25 + 4

25 = 8
25

SSQ(µ2, p6) = |7.4− 6|2 + |6.6− 8|2 = 1 24
25 + 1 24

25 = 3 23
25

SSQ(µ2, p7) = |7.4− 7|2 + |6.6− 8|2 = 4
25 + 1 24

25 = 2 3
25

SSQ(µ2, p8) = |7.4− 7|2 + |6.6− 9|2 = 4
25 + 5 19

25 = 5 23
25

TD2(C2) = 50 2
5

First solution: TD2 = 61 1
2

Second solution: TD2 ≈ 72.68
Optimal solution: TD2 = 54 2

5

Note: SSQ(µ, p) = Euclidean(µ, p)2 = L2
2(µ, p).
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Discussion

pros
I efficient: O(k · n) per iteration, number of iterations is

usually in the order of 10.
I easy to implement, thus very popular

cons
I k-means converges towards a local minimum
I k-means (MacQueen-variant) is order-dependent
I deteriorates with noise and outliers (all points are used

to compute centroids)
I clusters need to be convex and of (more or less) equal

extension
I number k of clusters is hard to determine
I strong dependency on initial partition (in result quality

as well as runtime)
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Summary

You learned in this section:
I What is Clustering?
I Basic idea for identifying “good” partitions into k clusters
I selection of representative points
I iterative refinement
I local optimum
I k-means variants [Forgy, 1965, Lloyd, 1982,

MacQueen, 1967]

44



DM534

Arthur Zimek

Color Histograms as
Feature Spaces for
Representation of
Images

A First Glimpse on
Clustering

References

References I

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 3rd edition, 2009.
ISBN 9783662443415.

E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability
of classifications. Biometrics, 21:768–769, 1965.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–136, 1982. doi: 10.1109/TIT.1982.1056489.

J. MacQueen. Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symposium on Mathematics, Statistics, and
Probabilistics, volume 1, pages 281–297, 1967.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison
Wesley, 2006.

45


	Color Histograms as Feature Spaces for Representation of Images
	Distances
	Features for Images
	Summary

	A First Glimpse on Clustering
	General Purpose of Clustering
	Partitional Clustering
	Algorithm
	Visualization: Algorithmic Differences
	Summary

	References

