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An agent is learning if it improves its performance on future tasks after making observations about
the world.

Why learning instead of directly programming?

Three main situations:

• the designer cannot anticipate all possible solutions

• the designer cannot anticipate all changes over time

• the designer has no idea how to program a solution
(see, for example, face recognition)

5



Machine Learning
Linear Regression
Artificial Neural NetworksForms of Machine Learning

• Supervised learning (this week)
the agent is provided with a series of examples and then it generalizes from those examples to develop an algorithm that

applies to new cases.

Eg: learning to recognize a person’s handwriting or voice, to distinguish between junk and welcome email, or to identify a

disease from a set of symptoms.

• Unsupervised learning (with Richard Röttger)
Correct responses are not provided, but instead the agent tries to identify similarities between the inputs so that inputs

that have something in common are categorised together.

Eg. Clustering

• Reinforcement learning:
the agent is given a general rule to judge for itself when it has succeeded or failed at a task during trial and error. The

agent acts autonomously and it learns to improve its behavior over time.

Eg: learning how to play a game like backgammon (success or failure is easy to define)
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• inputs that influence outputs
inputs ≡ independent variables, predictors, features
outputs ≡ dependent variables, responses

• goal: predict value of outputs

• supervised: we provide data set with exact answers

Example: House price prediction:

Size in m2 Price in K DKK
45 800
60 1200
61 1400
70 1600
74 1750
80 2100
90 2000
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Given: m points (pairs of numbers) {(x1, y1), (x2, y2), . . . , (xm, ym)}

Task: determine a model, aka a function g(x) of a simple form, such that

g(x1) ≈ y1,
g(x2) ≈ y2,

...
g(xm) ≈ ym.

• We denote by ŷ = g(x) the response value predicted by g on x .

• The type of function (linear, polynomial, exponential, logistic, blackbox) may be suggested by
the nature of the problem (the underlying physical law, the type of response).
It is a form of prior knowledge.

 Corresponds to fitting a function to the data
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Size in m2 Price in M DKK
45 800
60 1200
61 1400
70 1600
74 1750
80 2100
90 2000

Training data set



(x1, y1)
(x2, y2)

...

...
(xm, ym)

 


(45, 800)
(60, 1200)
(61, 1400)
(70, 1600)
(74, 1750)
(80, 2100)
(90, 2000)



g(x) = −489.76+ 29.75x
x ŷ y
45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000
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Regression task

Given: (x1, y1), . . . , (xm, ym)
Task: predict the response value ŷ for a new input x

 Idea: Let ŷ(x) be the average of the k closest points:

1. Rank the data points (x1, y1), . . . , (xm, ym) in increasing order of distance from x in the input
space, ie, d(xi , x) = |xi − x |.

2. Set the k best ranked points in Nk(x).

3. Return the average of the y values of the k data points in Nk(x).

In mathematical notation:

ŷ(x) =
1
k

∑
xi∈Nk (x)

yi = g(x)
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Regression problem:
variable to predict is continuous/quantitative

Classification problem:
variable to predict is discrete/qualitative
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Artificial Neural NetworksExample: k-Nearest Neighbors

Classification task

Given: (x1, y1), . . . , (xm, ym)
Task: predict the class ŷ for a new input x .

 Idea: let the k closest points vote and majority decide

1. Rank the data points (x1, y1), . . . , (xm, ym) in increasing order of distance from ~x in the input
space, ie, d(~xi , ~x) = |xi − x |.

2. Set the k best ranked points in Nk(x).

3. Return the class that is most represented in the k data points of Nk(x).

In mathematical notation:

ŷ = argmaxG∈G
∑

xi∈Nk (x)|yi=G

1
k

= Ĝ (x)

12



Machine Learning
Linear Regression
Artificial Neural NetworksOutline

1. Machine Learning

2. Linear Regression
Extensions

3. Artificial Neural Networks
Single-layer Networks
Multi-layer perceptrons

13



Machine Learning
Linear Regression
Artificial Neural NetworksLinear Regression with One Variable

• The hypothesis set H is made by linear functions y = ax + b
and we search in H the line that fits best the data:

1. We evaluate each line by the distance of the points (x1, y1), . . . , (xm, ym) from the line in
the vertical direction (the y -direction):
Each point (xi , yi ), i = 1..m with abscissa xi has the ordinate axi + b in the fitted line.
Hence, the distance for (xi , yi ) is |yi − axi − b|.

2. We define as loss (or error, or cost) function the sum of the squares of the distances from
the given points (x1, y1), . . . , (xm, ym):

L̂(a, b) =
m∑
i=1

(yi − axi − b)2 sum of squared errors

 L̂ depends on a and b, while the values xi and yi are given by the data available.

3. We look for the coefficients a and b that yield the line of minimal loss.
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Training data set



(x1, y1)
(x2, y2)

...

...
(xm, ym)

 


(45, 800)
(60, 1200)
(61, 1400)
(70, 1600)
(74, 1750)
(80, 2100)
(90, 2000)



g(x) = 29.75x − 489.76
x ŷ y
45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

L̂ =
∑m

i=1(yi − ŷi )
2 =

= (800− 848.83)2

+(1200− 1295.03)2

+(1400− 1324.78)2

+(1600− 1592.5)2

+(1750− 1711.48)2

+(2100− 1889.96)2

+(2000− 2187.43)2 = 97858.86
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For

f (x) = b + ax

L̂(a, b) =
∑m

i=1(yi − ŷi )
2

= (800− b − 45 · a)2
+(1200− b − 60 · a)2
+(1400− b − 61 · a)2
+(1600− b − 70 · a)2
+(1750− b − 74 · a)2
+(2100− b − 80 · a)2
+(2000− b − 90 · a)2
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Theorem (Closed form solution)

The value of the coefficients of the line that minimizes the sum of squared errors for the given
points can be expressed in closed form as a function of the input data:

a =

∑m
i=1(xi − x̄)(yi − ȳ)∑m

i=1(xi − x̄)2
b = ȳ − ax̄

where:

x̄ =
1
m

m∑
i=1

xi ȳ =
1
m

m∑
i=1

yi

Proof: (not in the curriculum of DM534)
[Idea: use partial derivaties to obtain a linear system of equations that can be solved analytically]
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Learning = Representation + Evaluation + Optimization

• Representation: formal language that the computer can handle. Corresponds to choosing the
set of functions that can be learned, ie. the hypothesis set of the learner. How to represent the
input, that is, which input variables to use.

• Evaluation: definition of a loss function

• Optimization: a method to search among the learners in the language for the one minimizing
the loss.
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There can be several input variables (aka features). In practice, they improve prediction.

Size in m2 # of rooms · · · Price in M DKK
45 2 · · · 800
60 3 · · · 1200
61 2 · · · 1400
70 3 · · · 1600
74 3 · · · 1750
80 3 · · · 2100
90 4 · · · 2000
...

...
...

In vector notation:


(~x1, y1)
(~x2, y2)

...
(~xm, ym)

 ~xi =
[
xi1 xi2 . . . xip

]
i = 1, 2, . . . ,m
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Case with multiple input variables

Regression task

Given: (~x1, y1), . . . , (~xm, ym)
Task: predict the response value ŷ for a new input ~x

 Idea: Let ŷ(~x) be the average of the k closest points:

1. Rank the data points (~x1, y1), . . . , (~xm, ym) in increasing order of distance from x in the input
space, ie, d(~xi , ~x) =

√∑
j(xij − xj)2.

2. Set the k best ranked points in Nk(~x).

3. Return the average of the y values of the k data points in Nk(~x).

In mathematical notation:

ŷ(~x) =
1
k

∑
~xi∈Nk (~x)

yi = g(~x)

 It requires the redefinition of the distance metric, eg, Euclidean distance
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Artificial Neural Networksk-Nearest Neighbors Revisited

Case with multiple input variables

Classification task

Given: (~x1, y1), . . . , (~xm, ym)
Task: predict the class ŷ for a new input ~x .

 Idea: let the k closest points vote and majority decide

1. Rank the data points (~x1, y1), . . . , (~xm, ym) in increasing order of distance from ~x in the input
space, ie, d(~xi , ~x) =

√∑
j(xij − xj)2.

2. Set the k best ranked points in Nk(~x).

3. Return the class that is most represented in the k data points of Nk(~x).

In mathematical notation:

Ĝ (~x) = argmaxG∈G
∑

~xi∈Nk (~x)|yi=G

1
k
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Representation of hypothesis space if only one variable (feature):

h(x) = θ0 + θ1x linear function

if there is another input variable (feature):

h(x) = θ0 + θ1x1 + θ2x2 = h(~θ, ~x)

for conciseness, defining x0 = 1.

h(~θ, ~x) = ~θ · ~x =
2∑

j=0

θjxj h(~θ, ~xi ) = ~θ · ~xi =

p∑
j=0

θjxij

Notation:

• p num. of features, ~θ vector of p + 1 coefficients, θ0 is the bias

• xij is the value of feature j in sample i , for i = 1..m, j = 0..p

• yi is the value of the response in sample i
24
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Evaluation
loss function for penalizing errors in prediction.
Most common is squared error loss:

L̂(~θ) =
m∑
i=1

(
yi − h(~θ, ~xi )

)2
=

m∑
i=1

yi −
p∑

j=0

θjxij

2

loss function

Optimization

min
~θ

L̂(~θ)

 Although not shown here, the optimization problem can be solved analytically and the solution
can be expressed in closed form.
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It generalizes the linear function h(x) = ax + b to a polynomial of degree k

Representation

h(x) = poly(~θ, x) = θ0 + θ1x + · · ·+ θkx
k

where k ≤ m − 1 (m number of training samples).
 Each term acts like a different variable in the previous case.

~x =
[
1 x x2 . . . xk

]

Evaluation Again, we use the loss function defined as the sum of squared errors loss:

L̂(~θ) =
m∑
i=1

(
yi − poly(~θ, ~xi )

)2
=

m∑
i=1

(
yi − θ0 − θ1xi − · · · − θkxki

)2
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Optimization:

min
~θ

L(~θ) = min
m∑
i=1

(
yi − poly(~θ, ~xi )

)2
= min

m∑
i=1

(
yi − θ0 − θ1xi − · · · − θkxki

)2
this is a function of k + 1 coefficients θ0, · · · , θk .

 Although not shown here, also this optimization problem can be solved analytically and the
solution can be expressed in closed form.
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Avoid peeking: use different data for different tasks:

Training and Test data

• Coefficients learned on Training data

• Coefficients and models compared on Validation data

• (Final assessment on Test data)

Techniques:

• Holdout method

• If small data:
k-fold cross validation
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k number of coefficients, eg, in polynomial regression the order of the polynomial
ERMS root mean square of loss
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A neuron in a living biological system

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Signals are noisy “spike trains” of electrical potential
34
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Activities within a processing unit
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Basic idea:

• Artificial Neuron

• Each input is multiplied by a weighting factor.

• Output is 1 if sum of weighted inputs exceeds the threshold value;
0 otherwise.

• Network is programmed by adjusting weights using feedback from examples.

 “The neural network” does not exist. There are different paradigms for neural networks, how
they are trained and where they are used.

36



Machine Learning
Linear Regression
Artificial Neural NetworksGeneralization of McCulloch–Pitts unit

Let aj be the j input to node i .
Then, the output of the unit is 1 when:

−2a1 + 3a2 − 1a3 ≥ 1.5

or equivalently when:

−1.5− 2a1 + 3a2 − 1a3 ≥ 0

and, defining a0 = −1, when:

1.5a0 − 2a1 + 3a2 − 1a3 ≥ 0

In general, for weights wji on arcs ji a neuron outputs 1 when:
p∑

j=0

wjiaj ≥ 0,

and 0 otherwise. (We will assume the zeroth input a0 to be always −1.)
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Hence, we can draw the artificial neuron unit i :

w1i
w2i w0i
w3i

a1

a2

a3

ai

also in the following way:

w0i
a0 = −1

w1ia1
w2i

a2 w3i

a3

ai

where now the output ai is 1 when the linear combination of the inputs:

ini =

p∑
j=0

wjiaj = ~wi · ~a ~aᵀ =
[
−1 a1 a2 · · · ap

]
is > 0.
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Output is a function of weighted inputs. At unit i

ai = g(xi ) = g

 p∑
j=0

wjiaj

 ai for activation values;
wji for weight parameters

Changing the weight w0i moves the threshold location

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Non linear activation functions

step function or threshold function
(mostly used in theoretical studies)

 perceptron

continuous activation function, e.g., sigmoid
function 1/(1 + e−z)
(mostly used in practical applications)

 sigmoid neuron

1/(1 + e−xi )
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AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

But not every Booelan function can be implemented by a perceptron. Exclusive-or circuit cannot
be processed (see next slide).

McCulloch and Pitts (1943) first mathematical model of neurons. Every Boolean function can be
implemented by combining this type of units.

Rosenblatt (1958) showed how to learn the parameters of a perceptron. Minsky and Papert (1969)
lamented the lack of a mathetical rigor in learning in multilayer networks. 42
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Consider a perceptron with g = step function
At unit i the output is 1 when:

p∑
j=0

wjixj > 0 or ~wi · ~x > 0

Hence, it represents a linear separator in input space:
- line in 2 dimensions
- plane in 3 dimensions
- hyperplane in multidimensional space

43

These points are not
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Structure (or architecture): definition of number of nodes, interconnections and activation
functions g (but not weights).

• Feed-forward networks:
no cycles in the connection graph

• single-layer perceptrons (no hidden layer)

• multi-layer perceptrons (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

• Recurrent networks:
connections between units form a directed cycle.
– internal state of the network
exhibit dynamic temporal behavior (memory, apriori knowledge)

– Hopfield networks for associative memory
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Neural Networks are used in classification and regression

• Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

• k-way classification
- divide single output into k portions
- k separate output units

• continuous output
- identity or linear activation function in output unit
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Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff
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Layers are usually fully connected;
number of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

(a for activation values; W for weight parameters)
49
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W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parametrized family of nonlinear functions:

a5 = g(w3,5 · a3 + w4,5 · a4)

= g(w3,5 · g(w1,3 · a1 + w2,3 · a2) + w4,5 · g(w1,4 · a1 + w2,4 · a2))

Adjusting weights changes the function: do learning this way!
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What is the output of this two-layer network on the input a1 = 1, a2 = 0 using step-functions as
activation functions?

The input of the first neuron (node 3) is:∑
j

wj3aj = w13 · a1 + w23 · a2 = 1 · 1 + 1 · 0 = 1

which is < 1.5, hence the output of node 3 is a3 = g(
∑

j wj3aj) = 0.
The input to the second neuron (node 4) is:∑

j

wj4aj = w14 · a1 + w34 · a3 + w24 · a24 = 1 · 1− 2 · 0 + 1 · 0 = 1

which is > 0.5, hence the output of the node 4 is a3 = g(
∑

j wj4aj) = 1. 51
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All continuous functions with 2 layers, all functions with 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (Minsky & Papert, 1969)
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Deep learning ≡
convolutional neural networks ≡
multilayer neural network with structure
on the arcs

Example: one layer only for image
recognition, another for action decision.

The image can be subdivided in regions
and each region linked only to a subset of
nodes of the first layer.
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Binary Classification
The Fisher’s iris data set gives measurements in centimeters of the variables:
petal length and petal width for 50 flowers from 2 species of iris: iris setosa, and iris versicolor.
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iris.data:

Petal.Length Petal.Width Species id
4.9 3.1 setosa 0
5.5 2.6 versicolor 1
5.4 3.0 versicolor 1
6.0 3.4 versicolor 1
5.2 3.4 setosa 0
5.8 2.7 versicolor 1

Two classes encoded as 0/1
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In 2D, the decision surface of a linear combination of inputs gives: ~w · ~x = constant, a line!
Training the perceptron ≡ searching the line that separates the points at best.
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We try different weight values moving towards the values that minimize the misprediction of the
training data: the red line.
(Gradient descent algorithm) (Rosenblatt, 1958: the algorithm converges)
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