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Social Networks

* This graph might depict Facebook friendship relations, or
Twitter follower relations, or...
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Chemical Compounds

| T
T—Q—m T

_ _ Hl%lH

—)—0U— I
T S
L

PR ol Beid

_ | .
T—U—T T = i =

L -

T

_ oy
L—O—T T _

_ | T T—U—T T
M J—— ) —IT _ _ _

_ i T—QO——U U—IT
T—U—T T _ _ _

| T T—O—T T
T—U—T _

_ T—Q—!T!
H—— _

_ a5

T

Isomers of Hexane



Metabolic Networks
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Metabolic Network of E. coli.



What is a graph?

Vertices: PQ,R,S T
Edges: all the lines
Degree of a vertex: number of edges with that vertex as an end-point



Interpretation:

The graph from the last slide might depict this roadmap. Note that the intersection
of the lines PS and QT is not a vertex, since it does not correspond to a cross-roads



Another Interpretation:

T S

If P, Q, R, S and T represent football teams, then the existence of an edge might
correspond to the playing of a game between the teams at its end-points. Thus, team P
has played against teams Q, S and T, but not against team R. In this representation, the
degree of vertex is the number of games played by the corresponding team.



Two different graphs? No!

T S

In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the
rectangle PQST. The resulting graph still tells us whether there is a direct road from one intersection to another,
and which football teams have played which. The only information we have lost concerns 'metrical’' properties,

such as the length of a road and the straightness of a wire.



The first scientific article using the term graph
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(Feb. 7, 1878

8 cm. from the primary. Reverse the wires in the
secondary circuit, reverse the wires in the primary civcuit,
how you please, the mercury always moves fowards the
Ppoint of the capillary. )

8. Shouting or singin%(exce ing the above-mentioned
note) produces no visible effect under the conditions

ioned in Experi 5,6,2and 7.

9. If the secondary coil be now moved close up, so as
to cover as completely as possible the primary, tall’:ing to
the telephone with the orgi‘:ary voice, #.¢. with moderate
strength and at any pitch, prod a definite m t
of the mercury column for each word, some sounds of
course giving more movement than others, du? the move-
ment is always towards the end of the capillary. Singing
the note mentioned in Experiments 5, 6, and 7 loudly,
produces a movement too large to be measured with the
electrometer.

Reversing the poles of the magnet in the telephone does
not alter the results of Experiments s, 6, 7, and 9.

On mentioning the above results to Dr. Burdon San-
derson, he suggested that the apparently anomalous
behaviour of the el ter might be ac d for, by
supposing that the mercury moved gwicker when a current
sasscd towards the point of the capillary than when it

owed in the opposite direction ; so that if a i

The analogy is between atoms and dimary quantics

e:(l:lnsively. i a i

compare every binary quantic with a chemical atom.
The numpger of factors (or‘iays, as they may be regarded
by an obvious geometrical interpretation) in a binary
quantic is the analogue of the number of donds, or the
walence, as it is termed, of a chemical atom.

Thus a linear form may be rded as a monad at
a quadratic form as a duad, a cubic form as a triad, an
50 on.

An invariant of a system of binary quantics of various
degrees is the anal of a chemical sub posed
of atoms of corresponding valences. The order of such
invariant in each set of coefficients is the same as the
number of atoms of the corresponding walence in the
chemical compound.

A co-variant is the analogue of an (organic or inorganic)
compound radical. The orders in the several sets of co-
efficients corresponding, as for invariants, to the respective
valences of the atoms, the free valence of the compound
radical then becomes identical with the degree of the
co-variant in the variables.

The weight of an invariant is identical with the number
of the bonds in the chemicograph of the log

hemical sub and the weight of the leading term

of rapidly alternating currents be passed through the
instrument, the mercury will always move towards the
EZ-"" of the capillary, the movement away from the point

ing masked by the sluggishness of the inst t in

(or basic differentiant) of a co-variant is the same as the
number of bonds in the chemicograph of the analogous
compound radical. Every invariant and covariant thus
b ible by a graph precisely identical with a

that direction, this explanation is the one

Kekulé Jiagram or chemicograph. But not every

is proved by the foll

P :—The
from two Grove's cells is sent through a metal reed
vibrating 100 times a second, the contact being made and
broken at each vibration, the primary wire of a Du Bois
Reymond’s induction-coil is also included in the circuit ; on

cting the el with the secondary coil placed
at an appropriate distance the mercu:

hemicograph is an algebraical one. I show that by an
lrplicalion of the algebraical law of reciprocity every
algebraical graph of a given invariant will represent the
constitution in terms of the roots of a quantic of a type
reciprocal to that of the given invariant of an invariant
belonging to that reciprocal type. I give a rule for the

Iway to
the point of the tube whatever be l&e direction of the
current. F. J. M. PAGE

Physiological Laboratory, University Coliege,
London, February 2
NOTE—On February 4 Prof. Grabam Bell kindly
placed at my disposal a telephone much more powerful
than any of those I had previously used. On speaking to
this inst the el being in the circuit,

movements of the y col as c
those in Experiment 9 were observed.—F. J. M. P,

CHEMISTRY AND ALGEBRA

IT may not be wholly without interest to some of the
readers of NATURE to be made acquainted with
an anal that has recently forcibly imp d me

g rical multiplication of graphs, 7.e. for constructing
a graph to the product of in- or co-variants whose separate
phs are given. I have also ventured upon ahmotbuis

which, whilst in nowise interfering with existing chemico-
graphical ¢ tions, for the seeming anomaly
of the isolated exi as “ d lecules” of

mercury, zinc, and arsenic—and gives a rational explana-
tion of the “ mutual saturation of bonds.”

I have thus been led to see more clearly than ever I
did before the existence of a common ground to the new
mechanism, the new chemistry, and the new algebra,
Underlying all these is the theory of pure colligation,
which afﬁ"“ undistinguishably to the three great
theories, all initiated within the last third of a century or
thereabouts by Eisenstein, Kekulé, and Peaucellier.

Baltimore, January 1 J. J. SYLVESTER

between branches of human knowledge apparently so
dissimilar as modern chemistry and modern algebra. I
have found it of great utility in explaining to non-mathe-
maticians the nature of the investigations which alge-
braists are at present busily at wark upon to make out
the so-called Grundformen or irreducible forms appurte-
nant to binary quantics taken singly or in systems, and 1
have also found that it may be used as an instrument of
investigation in purely algebraical inquiries. So much is

PALMEN ON THE MORPHOLOGY OF THE
TRACHEAL SYSTEM

DR. PALMEN, of Helsingfors, has recently published
an interesting memoir on the tracl system of
insects. He observes that although the gills of cer-
tain aquatic larva are hed to skin very near to
the points at which the spiracles open in the mature
i and though spiracles and gills do not co-exist in the

this the case that I hardly ever take up Dr. Frankland’s
exceedingly valuable “Notes for Chemical Stud >

same s'cgment, y:t the point of attachment of the gills
never ctly coincides with the position of the future

which are drawn up e:;_clusively on the basis of Kekul¢'s

q conception of valemce, without dﬂ’hﬁ' -
tions for new researches in the theory of ggrgu‘::l
forms. I will confine myself to a statement of the ground

spiracle. Moreover, he shows that even during the larval
condition, although the spiracles are not open, the struc-
ture of the sti ic duct is p and indeed that it

of the analogy, referring those who may feel an i

opens porarily at each moult, to permit the inner
tracheal b to be cast, after which it closes

in the subject and are desirous for further information

about it to a memoir which I have written upon it for the

new Americam Fournal of Pure and Applied Mathe-

;mlia, the first number of which will appear early in
‘ebruary.

again. In fact, then, he urges, the gills and spiracles do
not correspond mcd{, either in nu or in position,
and there can therefore be between them no i

netic
He lud t the i wil
trachez are not derived from ancestors provided with m




Directed Graphs (Digraphs)

S

Assume again a graph depicts a roadmap. The study of directed graphs (or digraphs, as we abbreviate them)
arises when making the roads into one-way streets. An example of a digraph is given above, the directions of the

one-way streets being indicated by arrows. (In this example, there would be chaos at 7, but that does not stop us
from studying such situations!)



Walks, Paths, and Cycles

Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another’,
and consists of a sequence of edges, one following after another. For example, in the above figure P —> Q—>R is
awalk oflength2,andP —>S —>Q —>T —>S —> R is a walk of length 5. A walk in which no vertex appears
more than once is called a path; for example and P —>Q —> R —> S is a path. A walk in which you end where

you started, for example Q —>S —>T —> Q,, is called a cycle.



Connectedness

- COPENHAGEN - KOBENHAVN
at Metro & S-Tog P -
<

Se- R Ve U

Some graphs are in two or more parts. For example, consider the graph whose vertices are the stations of the Copenhagen
Metro and the New York Subway, and whose edges are the lines joining them. It is impossible to travel from @sterport to
Grand Central Station using only edges of this graph, but if we confine our attention to the Copenhagen Metro only, then we
can travel from any station to any other. A graph that is in one piece, so that any two vertices are connected by a path, is a
connected graph; a graph in more than one piece is a disconnected graph.



Weighted Graphs

Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is
called a weighted graph, and the number assigned to each edge e is the weight of e, denoted by w(e).

Example: Suppose that we have a 'map' of the form shown above, in which the letters A to L refer to towns that are
connected by roads. Then the weights may denote the length of these roads.



Shortest Path (between one pair of vertices)

What is the length of the shortest path (=distance) from A to L?

The problem is to find a path from A to L with minimum total weight. This problem is called the Shortest Path Problem. Note
that, if we have a weighted graph in which each edge has weight 1, then the problem reduces to that of finding the number of
edges in the shortest path from A to L.



All-Pairs Shortest Path

16



All-Pairs Shortest Path : A Solution for Some Cities in Australia

2655 |

1693 | 3714

1739 | 3758 | 468 | ™ <

2127 | 4369 | 3064 | 3512 69\

510 2752|1790 | 1834 | 1617

2845 | 4669 | 2435 | 2883 | 1826 | 1971 G

1212 | 3867 | 2905 | 2949 | 1331 | 1108 [ 3157 | ©

3225 | 4690 | 1532 | 1980 | 3582 | 3322 | 2953 | 4233 | ©OW

o
1007 | 3662 | 2700 | 2744 | 1927 | 1095 | 3753 | 903 [4232| wO° “\)\:@‘*

3392 | 3815 | 1699 | 2147 | 3749 | 3489 | 3120 | 4400 | 875 | 4399 | ¥

pot” g
2845 | 5033 | 2473 | 2921 | 1044 | 2335 | 786 |2365 2991 | 2971|3158 | W 009

\
755 (3410|2448 | 2492 | 1675 | 843 | 3501 | 651 |3980 | 252 | 4147|2719 \‘& “\q&‘

2850 | 4915 | 1157 | 1605 | 1907 | 2164 | 1278 | 2724 | 1675 | 3070 | 1842 | 1316 [ 2818 | W

2713 | 420 | 3772 | 3816 | 4427 | 2810 [ 4727 | 3925 | 4283 | 3720 | 3408 | 5091 | 3468 | 4973 | @©

s
4531 | 2225 | 3289 [ 3737 | 5339 | 4628 | 4710 | 5743 | 2465 | 5338 | 1590 | 4748 | 5286 | 3432 | 1818 ?0 95 (-’,OP’6

2207 | 4449 | 3144 | 3592 | 80 | 1697 | 1906 | 1251 | 3662 | 2092 | 3829 | 1124 | 1840 | 1987 | 4507 | 5419

1422 | 3922 | 2960 | 3004 | 1027 | 1170 2853 | 304 4095|1145 | 4096 [ 2061 | 893 |2420 | 4136 | 5963 | 947 ‘5*0

DISTANCE IN KILOMETRES TO HOBART EXCLUDES MELBOURNE / DEVONPORT FERRY
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http://libweb5.princeton.edu/visual_materials/maps/websites/thematic-maps/introduction/introduction.html

Matrix Representations for Graphs

»- & wewtt

adjacent vertices adjacent edges
(010 1) 1 0010 0)
1012 110011
A= M:
010 1 011000

If G is a graph with vertices labelled {1, 2, ...}, its adjacency matrix A is the n x n matrix whose ij-th entry is the number of
edges joining vertex i and vertex j. Two nodes i and j are adjacent if the ij-th entry in the adjcacency matrix is larger than 0.

If, in addition to the vertices, the edges are labelled {1, 2,..., m}, its incidence matrix M is the n x m matrix whose ij-th entry
is 1 if vertex i is incident to edge j and 0 otherwise. The figure above shows a labelled graph G with its adjacency and
incidence matrices.



Adjacency Matrix for Weighted Graphs

(0010 1) (100100

1012 110011
A= M =

0101 011000

Given a weighted graph G, the adjacency matrix A is the matrix whose ij-th entry is the weight of the
edge between vertex i and vertex j.



(

Matrix-Matrix Multiplication

Recap
1()23><
2 2 1

—1

—_ = S =

DO DO Ot DO

Ot /) DO W



Matrix-Matrix Multiplication
Recap

1023><
-1 2 2 1

—_ = S =

DO DO Ot DO

Ot — DN W



Matrix-Matrix Multiplication
Recap



Matrix-Matrix Multiplication

Recap
1 2 3
1 023\ |45 2] _ (6 12 20
—1 2 2 1 1 2 1 | \10 14 8
1 2 5

Zero-based Numbering (“Zero indexed”) Gne-based Numbering (“Onelindexed”)

ri1 Ti12 7“13)
r21 T22 T23 |



Zero-Indexing

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index O,
rather than the index 1 as is typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the “row with index 1” in a matrix.

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FROM ZERD.

DIFFERENT TASks CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGOR ITHMS
EXPERT DONALD KNUTH,

“WHO ARE you? How DID.
YOU GET IN MY HOUSE?
/

WAIT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/ :

(picture from xkcd.com)



Matrix-Matrix Multiplication in Java (for Square Matrices)

// Assume M and N are both square (size x size) matrices
public static int[J[] multiplySquared(int[J[] M, int[J[J N) {

int size = M.length;

// In Java, all values are initialized to 0
int[J[J C = new int[size][size];

for (int 1 = 0Q; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = @; k < size; k++) {
) CLil03] += MLil[k] * N[kI[31;
}
¥

return C;

26



Matrix-Matrix Multiplication in Java

// Assume two matrices M and N, not necessarily squared
// (not needed further on in the lecture)
public static int[]J[] multiplyGeneral(int[J[] M, int[J[] N) {

int mRows = M.length;
int mColumns = M[@].length;
int nRows = N.length;
int nColumns = N[@].length;

// In Java, all values are initialized to @
int[J[] C = new int[mRows][nColumns];

for (int 1 = 0; 1 < mRows; i++) { // mRow
for (int j = @; j < nColumns; j++) { // nColumn
for (int k = @; k < mColumns; k++) {
; C[iJ03] += M[iJ[k] * N[k1[31;

}

return C;

Provided Code: MatMult. java




Matrices in Java: Implemented as Arrays of Arrays:

public static void printMatrix(int[J[] M) {
for (int 1 = 0; i < M.length; i++) {
for (int j = @0; j < M[@].length; j++)
System.out.print(String. format("%3d
System.out.println();

“Matrix” dimensions:

M hasM.length manyrowsandM[0] .lengthmany columns
N hasN.length manyrowsand N[0] .lengthmany columns

main:26
M
N

ari
0

ray
1 2 3
TSN S24(83

array

}

System.out.printlnQ);

}

public static void main(String[] args) {

intQ0O M={{1,

I
=

int[Q[I N = {

-

(Y

int(d S = {

-

el T s e e N e N PO eY

BN

031,
1},
3

System.out.println("\nInitial Matrix M:");

printMatrix(M);

System.out.println("\nInitial Matrix N:");

printMatrix(N);

",MLL0510);

Provided Code: MatMult. java

The result needs to have M. lengthmanyrowsand N[ 0] . length many columns

28



Powers of the Adjacency Matrix

1 2 3 4 5 6
(o 1/0 1 0 0 1 0
o 1o 10000
A:4000011
501 1. 0 1 0 0

(D 6\0 0 0 1 0 O

AP = A x A... x A is called the k-th power of the adjacency matrix
N—— —’

k times
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Theorem:

If G is a graph with adjacency matrix A, and vertices
with indices 1,...,n then for each positive integer k

the ij-th entry of A"
1S

the number of different walks using exactly £ edges
from node 7 to node 3

3 4 5 6 1 2 345 6 1 2 3 4
1 1 1 0) 1(241141\ 1(8745
001 1 0 2[4 2 3 1 5 1 2|7 12 2 6
1010 ,_3|130110| ,, 3|42 31
0 2 0 0 41111 0 4 2 115 6 1 6
10 3 1 504 5 1 4 2 0 517 7 5 2
0 0 1 1) 6\1 102 0 0/ 6\1 1 1 0

O Ot J 3 Ot
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Eule:java daniel$ java AdjacencyMatMult

|I"I Java Initial Matrix A :
1 0

public static void main(String[] args) { )
int[1[] A = {{0,1,0,0,1,0}, <,
{1,0,1,0,1,0}, S

)

11

0’0}’ h power of
0,0

(o)
1
3
9
int size = A.length; 1
1
9

int[J[ R = A.cloneQ);

3-th power of

System.out.println("Initial Matrix A :"); 4

printMatrix(A);

for (int 1 =2; i < 5; i++) {
System.out.println(i+"-th power of A :");
R = multiplySquared(A, R);
printMatrix(R); T

-t
2
4
1
1
4
1

A
5
6
1
6
2
0

Provided Code: AdjacencyMatMult. java

Eule:java daniel$ |



Proof: (also on (virtual) blackboard)

Let G be a graph with adjacency matrix A, and vertices 1,...,n. We proceed
by induction on k£ to obtain the result.

Base Case:
Let k =1. A' = A. a;; is the number of edges from i to j, which is identical to
the number of walks of length 1 from ¢ to j.

Inductive Step:

Assume true for a positive integer k. Let b;; be the ij-th entry of A¥ . and let
a;; be the ¢j-th entry of A. By the inductive hypothesis b;; is the number of
walks of length k from i to j. Consider the ij-th entry of A¥t! = A x AF, i.e,
A,Z-_Fl = aﬂblj -+ aigbgj + ...+ ambnj = ZZ:l aikbkj. Consider ailblj. This is
equal to the number of walks of length 1 from ¢ to 1 times the number of walks
of length k£ from 1 to j. This is therefor equal to the number of walks of length
k + 1 from ¢ to 7, where 1 is the second vertex. This argument holds for each
vertex m, 1.e., Gimbym; 1s the number of walks from ¢ to j in which m is the
second vertex. Therefore, the sum is the number of all possible walks from 3
to 7.



Algorithm for All-Pairs Shortest Path

Weighted Graph G with weights on edges:

 What is the distance (=length of the
shortest path) between Aand L ?

17

Generalization:

 What are the distances of
ALL paths (=lenghts of ALL
shortest paths) between all
pairs of nodes?

... and how can we find all
these distances?

34



The Edge Weight Matrix W

Example:
1 2 3 4 5 6
1 ( 0 1 oo oo 2 oo\
2 1 0 2 o 4 o
W — 31 oo 2 0 oo oo 3
41 00 o0 oo 0 6 1
51 2 4 oo 6 0 o
§ \oo oo 3 1 oo 0 )
weights are depicted in red
Definition:

(the weight of the edge (i,7) if the edge (7,7) exists

Note: Matrix W has entries

Wij =40 if 1 = J corresponding to infinity, as it might
50 else be |mp.os.5|ble to reach vertex j from

. vertex i via 1 edge.

Interpretation:
W;; is the distance from vertex i to vertex j using maximally 1 edge

We assume all weights are not
negative, i.e., larger or equal to O.



A modified Matrix-Matrix Multiplication

1
1
3

— N O

1
4
1

DO W D
O,
G
TN W
|
JUNCINC
INGNJURGU
JUNINGN

MON=R

Definition:
Tri; = mink{mik + nkj}

Note: this operation is very similar to the
standard matrix-matrix multiplication: however,
Example' for computation of the ij-th entry the

: multiplication is replaced by addition, and
r33 = mln{B +3,1+2,2+ 5} — 3 addition is replaced by the minimum operation.




Theorem:
If G is a weighted graph with edge weight matrix W,

and vertices with indices 1,...,n then for each positive
integer k
the ij-thentry of WE=WoOWoO...0W
—/_/
k times

1S
the length of the shortest path from ¢ to 3
using maximally k& edges
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Consider the two vertices with index 5 and 3 in W#

Shortest Path using maximally 4 edges:

5->1->2->3(distance 5)

1 2 3 4 5 6

1 2 3 4 5 6

3 4 5 6
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Matrix-Matrix Multiplication in Java (for Square Matrices)

// Assume M and N are both square (size x size) matrices
public static int[]J[] multiplySquared(int[][] M, int[J[] N) {

int size = M.length;

// In Java, all values are initialized to 0
int[J[0 C = new int[size][size];

for (int 1 = 0; 1 < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = @; k < size; k++) {
) CLiJ03] += M[i1[k] * NCKI[C3];

}
}

return C;
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Modified Matrix-Matrix Multiplication in Java (for Square Matrices)

public static int[][] multiplyModSquared(int[][] M, int[J[] N) {
int inf = Integer.MAX_VALUE;

int size = M.length;

int[J[J C = new int[size][size];

for (int 1 = 0; 1 < size; i++) {
for (int j = 0; j < size; j++) {
CLi1[3] ~[inf;

}
}

int add;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = 0; k < size; k++) {
if (M[i][k] == inf || N[k][j] == inf)
C[i1[3] = Math.min(C[1][j], inf);
else

C[i1[3] = Mathimin(C[i1[§], MCiJCKICEINIKICID);

}

return C;

Provided Code: ShortestPaths. java

Standard Matrix-
Matrix Multiplication:

// Assume M and N are both square (size x size) matrices
public static int[J[] multiplySquared(int[J[] M, int[dJ[] N) {

int size = M.length;

// In Java, all values are initialized to @
int[J[d C = new int[size][size];

for (int i = 0; i < size; i++) {
for (int j = @; j < size; j++) {
for (int k = @; k < size; k++) {
| o B Mi10k] (¥ DK T
}
}

return C;
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Eule:java daniel$ java ShortestPaths

In Java Initial Matr‘?x W .

® 1 inf inf 2 inf

1 O 2inf 4 inf
inf 2 0@ inf inf 3
inf inf inf @ 6 1

2 41inf 6 0 inf
inf inf 3 1 inf 0

public static void main(String[] args) {
int inf = Integer.MAX_VALUE;

intdQO w={{ o, . ‘1nf, 18f, 2, Lntl,

1
{ i . Q, 2, inf, 4, inf},
{ inf, 2, @, inf, inf, 3%, s )
{ inf, inf, inf, 0, 6, 13, 2-th modlfged Zower gf W
{ Z, 4, inf, 6, 0, inf},

{ inf, inf, 3, 1, inf, 0}}: e

int size = W.length;

2
0
4
6
3

int[d[ R = W.cloneQ);

3-th modified

System.out.println("Initial Matrix W :"); 1 3

printMatrix(W);

for (inti=2; 1 <5; i) {
System.out.println(i+"-th modified power of W :");
R = multiplyModSquared(W, R);
printMatrix(R);

} 4-th modified

Provided Code: ShortestPaths.java

Note: Java has no explicit support for infinity for Integers (but for floating
point values)




1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1/0 1 o0 oo 2 oo 1/0 1 3 8 2 o© 1{0 1 3 8 2 6 10 1 3 7 2 6 1{0 1 3 7 2 6
211 0 2 oo 4 o 211 0 2 10 3 5 211 0 2 6 3 5 211 0 2 6 3 5 211 0 2 6 3 5
W:3 o 2 0 oo oo 3 W2:3 3 2 0 4 6 3 W3:3 3 2 0 4 5 3 W4:3 3 2 0 4 5 3 W5—3 3 2 0 4 5 3
4100 00 0o 0 6 1 41 8 10 4 0 6 1 418 6 4 0 6 1 417 6 4 0 6 1 417 6 4 0 6 1

51 2 4 oo 6 0 51 2 3 6 6 0 7 512 3 5 6 0 7 512 3 5 6 0 7 512 3 5 6 0 7

6 \co oo 3 1 o 0 6 \occ 5 3 1 7 0 6\6 5 3 1 7 0 6\6 5 3 1 7 0 6\6 5 3 1 7 0

W AW 2 AW LW A=W =W °=

Which value of k is necessary, in order to have W*
contain all the pairwise distances of all vertexes?

Answer: n — 1 (which is identical to |V| — 1)

Assume all edge weights are not negative. The number of edges needed for a shortest path can
maximally be n-1, where n is the number of vertices in the graph. If the path would go via n edges,
then you would have to visit at least one vertex twice, but then the path cannot be a shortest path
anymore. Obviously W* = W™~ for all k>n-1.




Lemma:
If G is a weighted graph with edge weight matrix W,
and vertices with indices 1,...,n then

the ij-thentry of WP l=WoWo...0W
N——_—

n — 1 times

1S
the distance from 7 to 3

D := W™ ! is called the distance matrix of the graph G.



Computation of the Distance Matrix by Repeated Squaring

/ \ ((

W) = (W o W)
wn—tl = (WoW)eoW |[eW [eW | e...0W ——
T \\ W2 ,}
\— S we )
\ ne ) \\ e ) )

N ~~ J/ N
e / e

o . W (2k)

k matrix-matrix multiplication are needed (namely
squaring a matrix k times) in order to compute the
n-2 matrix-matrix multiplication are needed in matrix W(2"’)

order to compute the distance matrix D = Wn"~1

2%has to be larger or equal to n-1, or equivalently,
k has to be larger or equal to log,(n — 1)

Example: Consider a graph G with 101 vertices. In order to compute the distance matrix D = W10, the left
approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring)
requires only 7 matrix-matrix multiplications, as 27 = 128, and D = W28 = 100



Runtime Test in Java

Note:

Math.ceil (
Math.log(size-1)/
Math.log(2) )

m—)

returns the smallest integer larger or
equalto log2 (size-1), i.e.,, Rwill be
the distance matrix after this for loop.

Reminder: logy(x) =

Provided Code: timing.py

public static void main(String[] args) {
Random ran = new Random();

long t1, t2;
int size = 300;
int [J[1 W = new int[size][size];

for (int i = @0; i < W.length; i++) {
for (int j = i; j < W[@].length; j++) {
int r =ran.nextInt(10);
WLil[3] = r;
WEJ10d = r;

}
}

// make a copy of the edge weight matrix W
int[J[] R = W.clone(Q);

System.out.println(String. format("Comparing runtimes for distance matrix computation for matrices of size %d x %d",size,size));

// find the distance matrix by (n-2) subsequent matrix matrix multiplications
// R = CCAWSWD*WD*. . . *W) = WA(n-1)
tl = System.currentTimeMillis(Q);
for (int 1 =0 ; 1 < size - 2; i++)
R = multiplyModSquared(R,W);
t2 = System.currentTimeMillisQ);

System.out.println(String.format("The n-2 multiplications took %3.2f seconds",((t2-t1)/1000.0)));

// set the R=W (re-initialize)
R = W.clone(Q);

// find the distance matrix by ceil(log_2(n-1)) subsequent matrix matrix
// mulitplications via repeated squaring R = (((WA2)A2)A2...)A2

tl = System.currentTimeMillis(Q);
for (int i=0; i < Math.ceil( Math.log(size-1) / Math.log(2) ); i++)

R = multiplyModSquared(R,R);
t2 = System.currentTimeMillis(Q);

System.out.println(String.format("The ceil(log_2(n-1)) multiplications took %3.2f seconds",((t2-t1)/1000.0)));

Eule:java daniel$ java Timing
Comparing runtimes for distance matrix computation for matrices of size 300 x 300

The n-2 multiplications took 15.37 seconds
The ceil(log_2(n-1)) multiplications took 0.47 seconds



The most obvious Application of Computing the Distance Matrix:
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Another Application of the Distance Matrix:
Predicting Boiling Points of Paraffins

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the
boiling point of different paraffins. He used the graph representation G of the
carbon backbone of a molecule with n carbon atoms and calculated the Wiener-
Index the sum of all distances between all pairs of vertexes, i.e.

1 e

i=1 j=1

He predicted the boiling point tz to be

t = to — o (w0 = W(G) + 55 (m ~ )

with to = 745.42 - log,,(n + 4.4) — 689.4
1

wozé-(n—kl)-n-(n—l)

po=n—3
p = the number of shortest paths ¢ — ... — j of length 3 in G with ¢ <

= half of the number of entries ”3” in the distance matrix D



Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHj

ch CH3

CHx

The chemical compound

123456
10212 2 3)
212 01 2 2 3
gl 3|1 10 112
42 210 21
502 21 2 0 3
6\3 3213 0)

Distance Matrix

|
H g H
H—O) i\
H—{C
N
o
H

The carbon backbone

WE) = L33 Dy 28

i=1 j=1
to = 68.72
wozé-5-6-7:35
po=6—-3=3
p=3

1 2 3 4 5 6
4 6 1 /O o 1 oo oo oo\
1 21 o0 O 1 oo oo oo
3 W— 311 1 0 1 1 oo
41 o0 oo 1 0 oo 1
35 5l oo o 1 oo 0 o
2 6 \oo oo oo 1 oo O)
Graph G Edge Weight Matrix

Note: Depending on how you chose to label your graph, the edge
weight matrix might look different. This won’t matter for the
subsequent calculations.

a N

tg = to— (%(’wo —W(G)) + 5.5 (po —P))

08
= 68.72— (35— 28) —5.5- (3 -3)

\ = 49.66 J

Calculation of Wiener Index and other parameters,
as well as the resulting boiling point prediction.




Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHj

Predicted Boiling Point: tp = 49.66

H3C CH3
Real Boiling Point: %! ~ 49.7 — 50.0

CHx

The prediction of boiling points of paraffins based on the Wiener-Index of the
corresponding molecular graph is amazingly accurate. Try it yourself (see
exercises)! Intuitively, the Wiener-Index quantifies the “compactness” of a graph
(or molecule). Long single chained molecules with n carbons have a larger
Wiener-Index than molecules that contain many branches. Long molecules tend
to align nicely, and have therefore usually a higher boiling point.




