DM534 - Introduction to Computer Science, Week 47/48

Graph Theory
Daniel Merkle
daniel@imada. sdu. dk


```
    subscribe O
    #\mp@code{MED}

GRAPH THEDRY: KEY TO UNDERSTANDING BIG DATA


\section*{Graph \\ Theory Motivation}


\section*{Social Networks}
- This graph might depict Facebook friendship relations, or Twitter follower relations, or...

\section*{Chemical Compounds}


\section*{Metabolic Networks}


Metabolic Network of E. coli.

\section*{What is a graph?}


Vertices:
Edges:
Degree of a vertex:
\(P, Q, R, S, T\) all the lines
number of edges with that vertex as an end-point

\section*{Interpretation:}


The graph from the last slide might depict this roadmap. Note that the intersection of the lines PS and QT is not a vertex, since it does not correspond to a cross-roads

\section*{Another Interpretation:}


If \(P, Q, R, S\) and \(T\) represent football teams, then the existence of an edge might correspond to the playing of a game between the teams at its end-points. Thus, team \(P\) has played against teams \(\mathrm{Q}, \mathrm{S}\) and T , but not against team R . In this representation, the degree of vertex is the number of games played by the corresponding team.

\section*{Two different graphs? No!}


In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the rectangle PQST. The resulting graph still tells us whether there is a direct road from one intersection to another, and which football teams have played which. The only information we have lost concerns 'metrical' properties, such as the length of a road and the straightness of a wire.

\section*{The first scientific article using the term graph}

 secondary circuin, reverse the wives in the primary ircuit,
how yout please the mercury always moves towards the
point of the capillary. point of the eapillary.
8. Shouting or singing (excepting the above-mentioned
note) produces no visible effect under the conditions notestioned in Experiments 5. 6, and 7.
men 9. Nor as completely as possible the primary, talking to
to cover the telephone with the ordinary voice, i.e. with moderate
strength and at any pitch, produces a definite moder strength and at any pitch, produces a definite movemen
of the mercury column for each word, some sounds of course giving more movement than others, but the movement note mentioned in Experiments 5, 6, and 7 loudly produces a movement too large to be measured with the Reversing the poles of the magnet in the telephone does not alter the results of Experiments \(5,6,7\), and 9 . On mentioning the above results to Dr. Burdon San
derson, he suggested that the apparently anomalous behaviour of the electrometer might be accounted for, by supposing thar the mercury moved quicker when a current
passed towards the point of the capillary than when it flowed in the opposite direction ; so that if a succession
of rapidly alternating currents of rapidly alternating currents be passed through the
instrument, the mercury will always move towards the point of the capillary, the movement away from the point being masked by the sluggishness of the instrument in is proved by the following experiment :-The curren
from two Grove's cells is sent from two Grove's cells is sentt through a metal reed
vibrating 100 times a second, the contact being made and vibrating 10 o times a second, the contact being made and
broken at each vibration, the primary wire of a Du Bois Reymond's induction-coil is also included in the circuit; ; at an appropriate distance the mercury always moves to the point of the tube whatever be the direction of the
current. current.
Physiological Laboratory, University Collegc, PAGE

> Physiological Loadonator, February Uns

NoTR-On February 4 Prof. Grabam Bell Kindly
placed at my disposal a telephone much more powerful placed at my disposal a telephone much more powerfu
than any of those I had previously used. On speaking to this instrument, the electrometer being in the circuit
movements of the mercury column as movements of the mercury column as considerable as
those in Experiment 9 were observed.-F. J. M. P.

CHEMISTRY AND ALGEBRA
\(I^{\mathrm{T}}\) may not be wholly without interest to some of the an analogy that has recently forcibly impressed we between branches of human knowledge apparently so
dissimilar as modern chemistry and modern algebra 1 disse fourd it of great utility in explaining to non-mathe-
have maticians the nature of the investigations which alge
braists are at present braists are at present busily at work upon to make out
the so-called Grundformen or irreducible forms appurte nant to binary quantics taken singly or in systems, and 1
have also found that it may be used as an in int havestigation in purely algebraical inquiries. So much is
invest this the case that I hardy ever take up Dr. Frankland's
exceedingly valuable "N otes for Chemical Stalen which are drawn up exclusively on the basis of Kekule's exquisite conception of valence,' without deriving suggestions for new researches in the theory of algebraical
forms. I will confine myeelf to a statement of the grounds
 in the subject and are desirous for further information new Amcrican Yournal of PAre and apponiad Mathe-
matics, the first number of which will appear early in matics, the first number of which will appear early in
Febuary.

The analogy is between atoms and binary quantice
exclusively.
I compare every binary quantic with a chemical atom. I compare every binary quantic with a chemical atom
The number of factors (or rays, as they may be regarded by an obvious geometrical interpretation) in a binary
quantic is the analogue of the number of bonds, or the
qual Thusice, as it in termed, of a chemical atom.
Thus a linear form may be regarded as a monad atom
a quadratic form as a duad, a cubic form as a triad, and
50 on. An invariant of a system of binary quantics of various
degrees is the analogue of a chemical substance composed degrees is the analogute of a chemical substance composed
of atoms of corresponding valences. The order of suck
invariant in each set of coefficients is the sme as nvariant in each set of coefficients is the same as the
number of atoms of the corresponding valence in the Ahemical compound.
A co-variant is the analogue of an (organic or inorganic)
compound radical. The orders in the several sets of co Aompound radical. The orders in the several sets of co
efficients corresponding, as for invariants, to the respective valences of the atoms, the free valence of the compound
radical then becomes identical with the degree of the ovical then becomes identical with the degree of
The weight the variables an The weight of an invariant is identical with the number
of the bonds in the chemicograph of the analogous the bonds in the chemicograph of the analo
chemical substance and the weight of the eading term (or basic differentiant) of a co-variant is the same as the
number of bonds in the chemicograph of the analogous umber of bonds in the chemicograph of the analogous
compound radical. Every invariant and covariant thus Kekul'दan diagram or chemicograph. But not eyery ekulean diagram or chemicograph. But not every
chemicograph is an algebraical one. I show that by an application of the algebrical law of reciprocity every
algebraical graph of a given invariant will represent the agebraical graph of a given invariant will represent the
constitution in terms of the roots of a quantic of a type
reciprac reciprocal to that of the given invariant of an invarian
belonging to that reciprocal type. I give a rule for the belonging to that reciprocal type. I give a rule for the
geometrical multippication of graphs, i.e. for constructing a graph to the product of in. or co variants whose separate
graphs are given. I have also ventured upon a hypothesis graphs are given. I have also ventured upon a bypothesi
which, wiblst in nowise interfering with existing chemico graphical constructions, accounts for the seeming anomaly
of the isolated existence as "monad molecules. of of the isolated existence as "monad molecules" of
mercury, zinc, and arsenic -and gives a rational explana-
tion of the " mutual saturation of bonds."

I have thus been led to see more clearly than ever
did before the existence of a common riound to the new mechanism, the new chemistry, and the new al gebra
Underlying all these is the theory of pure coligation Underlying all these is the theory of pure colligation
which applies undistinguishably to the three grea which applies undistinguishably to the three grea
theories, all initiated within the last third of a century or hereabouts by Eisenstein, Kekule, and Peaucellier.
Baltimore, January I J. SyIVESTER

PALMEN ON THE MORPHOLOG an interesting memoir on the trecheal pustem od
sects. He oberves that althour ain aquatic larve are attached to the the gills of cerhe points at which attached to the skina very near to
sects, and though spiracles and in the mature sects, and eough spiracles and gills do not co-exist in the
same segment, yet the point of attach ever exactly coincides with the position of the futur
 ure of the stigmatic duct is present, and indeed that in
opens temporarily at ach moult, to permit the innet pens temporanly at each mount, to permit the inn
tracheal membrane to be cast after which it closes
gain. In fact, then, he urges, the fills and spiracles do gain. In fact, then, he urges, the gills and spiracles do
ot correspond exacly, either in nuirber or in position, not correspond exaclly, either in nuiftrer or in position,
and there can therefor be between them no
conanection. He concludes that the insects with open


\section*{Directed Graphs (Digraphs)}


Assume again a graph depicts a roadmap. The study of directed graphs (or digraphs, as we abbreviate them) arises when making the roads into one-way streets. An example of a digraph is given above, the directions of the one-way streets being indicated by arrows. (In this example, there would be chaos at \(T\), but that does not stop us from studying such situations!)

\section*{Walks, Paths, and Cycles}


Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another', and consists of a sequence of edges, one following after another. For example, in the above figure \(P \rightarrow>Q \rightarrow>R\) is a walk of length 2 , and \(P \rightarrow S \rightarrow Q \rightarrow T \rightarrow S \rightarrow R\) is a walk of length 5 . A walk in which no vertex appears more than once is called a path; for example and \(P \rightarrow Q \rightarrow R \rightarrow S\) is a path. A walk in which you end where you started, for example \(Q \rightarrow S \rightarrow T \rightarrow Q\), is called a cycle.

\section*{Connectedness}


Some graphs are in two or more parts. For example, consider the graph whose vertices are the stations of the Copenhagen Metro and the New York Subway, and whose edges are the lines joining them. It is impossible to travel from \(\emptyset\) sterport to Grand Central Station using only edges of this graph, but if we confine our attention to the Copenhagen Metro only, then we can travel from any station to any other. A graph that is in one piece, so that any two vertices are connected by a path, is a connected graph; a graph in more than one piece is a disconnected graph.

\section*{Weighted Graphs}


Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is called a weighted graph, and the number assigned to each edge \(e\) is the weight of \(e\), denoted by \(w(e)\).
Example: Suppose that we have a 'map' of the form shown above, in which the letters A to \(L\) refer to towns that are connected by roads. Then the weights may denote the length of these roads.

\section*{Shortest Path (between one pair of vertices)}


What is the length of the shortest path (=distance) from A to L?

The problem is to find a path from A to \(L\) with minimum total weight. This problem is called the Shortest Path Problem. Note that, if we have a weighted graph in which each edge has weight 1 , then the problem reduces to that of finding the number of edges in the shortest path from \(A\) to \(L\).

\section*{All-Pairs Shortest Path}


What is the length of the shortest path (=distances) from any vertex to any vertex?
This problem is called the All-Pairs Shortest Path Problem

\section*{All-Pairs Shortest Path : A Solution for Some Cities in Australia}


DISTANCE IN KILOMETRES TO HOBART EXCLUDES MELBOURNE / DEVONPORT FERRY

One of the most decorative tables of distances (in Roman miles) between major European cities printed in the eighteenth century. Not only were the data extremely useful for traveling but also for sending a letter, because distance, not weight, determined the price.
(From the "Historic Maps Collection", Princeton University Library, link: here
http://libweb5.princeton.edu/visual_materials/maps/websites/ thematic-maps/introduction/introduction.html)

\section*{Matrix Representations for Graphs}

\[
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
\]
\[
\mathbf{M}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
\]

If \(G\) is a graph with vertices labelled \(\{1,2, \ldots\}\), its adjacency matrix \(A\) is the \(n \times n\) matrix whose \(i j\)-th entry is the number of edges joining vertex \(\boldsymbol{i}\) and vertex \(\boldsymbol{j}\). Two nodes \(\boldsymbol{i}\) and \(\boldsymbol{j}\) are adjacent if the ij -th entry in the adjcacency matrix is larger than 0 .

If, in addition to the vertices, the edges are labelled \(\{1,2, \ldots, m\}\), its incidence matrix \(\mathbf{M}\) is the \(n \times m\) matrix whose \(i j\)-th entry is 1 if vertex \(\boldsymbol{i}\) is incident to edge \(\boldsymbol{j}\) and 0 otherwise. The figure above shows a labelled graph \(G\) with its adjacency and incidence matrices.

\section*{Adjacency Matrix for Weighted Graphs}

\[
\mathbf{A}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
\]

Given a weighted graph \(G\), the adjacency matrix \(\mathbf{A}\) is the matrix whose \(i j\)-th entry is the weight of the edge between vertex \(\boldsymbol{i}\) and vertex \(\boldsymbol{j}\).

Matrix-Matrix Multiplication
Recap
\(\left(\begin{array}{cccc}1 & 0 & 2 & 3 \\ -1 & 2 & 2 & 1\end{array}\right) \times\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 5\end{array}\right)=(\)

Matrix-Matrix Multiplication
Recap
\[
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
-1 & 2 & 2 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 2 \\
1 & 2 & 1 \\
1 & 2 & 5
\end{array}\right)=(
\]

Matrix-Matrix Multiplication
Recap
\[
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
-1 & 2 & 2 & 1
\end{array}\right) \times\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 2 \\
1 & 2 & 1 \\
1 & 2 & 5
\end{array}\right)=\left(\begin{array}{ccc}
6 & 12 & 20 \\
10 & 14 & 8
\end{array}\right) \\
M \times N=R \\
r_{i j}=\sum_{k} m_{i k} * n_{k j}
\end{gathered}
\]

\section*{Matrix-Matrix Multiplication}

\section*{Recap}
\[
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
-1 & 2 & 2 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 2 \\
1 & 2 & 1 \\
1 & 2 & 5
\end{array}\right)=\left(\begin{array}{ccc}
6 & 12 & 20 \\
10 & 14 & 8
\end{array}\right)
\]

Zero-based Numbering ("Zero indexed")
\(\left(\begin{array}{lll}r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12}\end{array}\right)\)

One-based Numbering ("One indexed")
\(\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23}\end{array}\right)\)

\section*{Zero-Indexing}

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0 , rather than the index 1 as is typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the "row with index 1 " in a matrix.


\section*{Matrix-Matrix Multiplication in Java (for Square Matrices)}
```

// Assume M and N are both square (size x size) matrices
public static int[][] multiplySquared(int[][] M, int[][] N) {
int size = M.length;
// In Java, all values are initialized to 0
int[][] C = new int[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = 0; k < size; k++) {
C[i][j] += M[i][k] * N[k][j];
}
}
}
return C;
}

```

Provided Code: MatMult.java
\begin{tabular}{ll} 
Number of additions per result [i] [j] entry: & size \\
Number of multiplications per result[i][j]entry: & size \\
Number of entries in the result matrix: & size x size \\
Overall number of operations (additions and multiplications): & 2 x size x (size x size)
\end{tabular}

Overall computational runtime:
\(\mathcal{O}\left(\operatorname{size}^{3}\right)\)

\section*{Matrix-Matrix Multiplication in Java}
```

// Assume two matrices M and N, not necessarily squared
// (not needed further on in the lecture)
public static int[][] multiplyGeneral(int[][] M, int[][] N) {
int mRows = M.length;
int mColumns = M[0].length;
int nRows = N.length;
int nColumns = N[0].length;
// In Java, all values are initialized to 0
int[][] C = new int[mRows][nColumns];
for (int i = 0; i < mRows; i++) { // mRow
for (int j = 0; j < nColumns; j++) { // nColumn
for (int k = 0; k < mColumns; k++) {
C[i][j] += M[i][k] * N[k][j];
}
}
}
return C;
}

```

\section*{Matrices in Java: Implemented as Arrays of Arrays:}

"Matrix" dimensions:

M has M.length many rows and M[0]. lengthmany columns
N has N. length many rows and \(\mathrm{N}[0]\). lengthmany columns The result needs to have \(M\). lengthmany rows and \(N[0]\). length
```

public static void printMatrix(int[][] M) {
for (int i = 0; i < M.length; i++) {
for (int j = 0; j < M[0].length; j++)
System.out.print(String.format("%3d ",M[i][j]));
System.out.println();
}
System.out.println();
}
public static void main(String[] args) {
int[][] M = {{ 1, 0, 2, 3},
{-1, 2, 2, 1}};
int[][]
N = {{ 1, 2, 3},
{4, 5, 2},
{1, 2, 1},
{1, 2, 5}};
int[][] S = {{ 1, 2, 0},
{2,0,1},
{-1, 2, 3}};

```

System.out.println("\nInitial Matrix M:"); printMatrix(M);

System.out.println("\nInitial Matrix N:"); printMatrix(N);

Provided Code: MatMult.java

\(A^{k}=\underbrace{A \times A \ldots \times A}_{k \text { times }}\) is called the k-th power of the adjacency matrix

\section*{Theorem:}

If \(G\) is a graph with adjacency matrix \(A\), and vertices with indices \(1, \ldots, n\) then for each positive integer \(k\)

\section*{the \(i j\)-th entry of \(A^{k}\) is}
the number of different walks using exactly \(k\) edges from node \(i\) to node \(j\)
\(\left.A^{2}=\begin{array}{c}1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6\end{array}\left(\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right) \quad A^{3}=\begin{array}{c}1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6\end{array}\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 1 & 4 & 1 \\ 4 & 2 & 3 & 1 & 5 & 1 \\ 1 & 3 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 4 & 2 \\ 4 & 5 & 1 & 4 & 2 & 0 \\ 1 & 1 & 0 & 2 & 0 & 0\end{array}\right) \quad A^{4}=\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 \\ 2 \\ 3 \\ 8 & 7 & 4 & 5 & 7 & 1 \\ 7 & 12 & 2 & 6 & 7 & 1 \\ 4 & 2 & 3 & 1 & 5 & 1 \\ 5 & 6 & 1 & 6 & 2 & 0 \\ 7 & 7 & 5 & 2 & 13 & 4 \\ 6 \\ 1 & 1 & 1 & 0 & 4 & 230\end{array}\right)\)


\section*{Example:}

Consider the two vertices with index 4 and 5 in \(A^{4}\)

Length 4 walks:
1) 4 -> 5 -> 1 -> 2 -> 5
2) \(4->5->2->1->5\)

There are 2 walks of length 4.
Furthermore, \(A_{45}^{4}=2\).

\section*{In Java}
```

public static void main(String[] args) {
int[][] A = {{0,1,0,0,1,0},
{1,0,1,0,1,0},
{0,1,0,0,0,0},
{0,0,0,0,1,1},
{1,1,0,1,0,0},
{0,0,0,1,0,0}};
int size = A.length;
int[][] R = A.clone();
System.out.println("Initial Matrix A :");
printMatrix(A);
for (int i = 2; i < 5; i++) {
System.out.println(i+"-th power of A :");
R = multiplySquared(A, R);
printMatrix(R);
}
}

```


Eule: java daniel\$ java AdjacencyMatMult

\begin{tabular}{cccccc} 
Initial & Matrix \(A\) & \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{tabular}

2-th power of A
\begin{tabular}{llllll}
2 & 1 & 1 & 1 & 1 & 0 \\
1 & 3 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{tabular}

3-th power of A :
\begin{tabular}{rrrrrr}
2 & 4 & 1 & 1 & 4 & 1 \\
4 & 2 & 3 & 1 & 5 & 1 \\
1 & 3 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 4 & 2 \\
4 & 5 & 1 & 4 & 2 & 0 \\
1 & 1 & 0 & 2 & 0 & 0 \\
4-th power of A : \\
8 & 7 & 4 & 5 & 7 & 1 \\
7 & 12 & 2 & 6 & 7 & 1 \\
4 & 2 & 3 & 1 & 5 & 1 \\
5 & 6 & 1 & 6 & 2 & 0 \\
7 & 7 & 5 & 2 & 13 & 4 \\
1 & 1 & 1 & 0 & 4 & 2
\end{tabular}

\section*{Proof: (also on (virtual) blackboard)}

Let \(G\) be a graph with adjacency matrix \(A\), and vertices \(1, \ldots, n\). We proceed by induction on \(k\) to obtain the result.

\section*{Base Case:}

Let \(k=1 . A^{1}=A . a_{i j}\) is the number of edges from \(i\) to \(j\), which is identical to the number of walks of length 1 from \(i\) to \(j\).

Inductive Step:
Assume true for a positive integer \(k\). Let \(b_{i j}\) be the \(i j\)-th entry of \(A^{k}\), and let \(a_{i j}\) be the \(i j\)-th entry of \(A\). By the inductive hypothesis \(b_{i j}\) is the number of walks of length \(k\) from \(i\) to \(j\). Consider the \(i j\)-th entry of \(A^{k+1}=A \times A^{k}\), i.e, \(A_{i j}^{k+1}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}\). Consider \(a_{i 1} b_{1 j}\). This is equal to the number of walks of length 1 from \(i\) to 1 times the number of walks of length \(k\) from 1 to \(j\). This is therefor equal to the number of walks of length \(k+1\) from \(i\) to \(j\), where 1 is the second vertex. This argument holds for each vertex \(m\), i.e., \(a_{i m} b_{m j}\) is the number of walks from \(i\) to \(j\) in which \(m\) is the second vertex. Therefore, the sum is the number of all possible walks from \(i\) to \(j\).

\section*{Algorithm for All-Pairs Shortest Path}

Weighted Graph G with weights on edges:
- What is the distance (=length of the shortest path) between A and L ?

\section*{17}


Generalization:
- What are the distances of ALL paths (=lenghts of ALL shortest paths) between all pairs of nodes?
... and how can we find all these distances?


\section*{The Edge Weight Matrix W}
\(W=\)\begin{tabular}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{tabular}\(\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & \infty & \infty & 2 & \infty \\
1 & 0 & 2 & \infty & 4 & \infty \\
\infty & 2 & 0 & \infty & \infty & 3 \\
\infty & \infty & \infty & 0 & 6 & 1 \\
2 & 4 & \infty & 6 & 0 & \infty \\
\infty & \infty & 3 & 1 & \infty & 0\end{array}\right)\)

weights are depicted in red

\section*{Definition:}
\(W_{i j}= \begin{cases}\text { the weight of the edge }(i, j) & \text { if the edge }(i, j) \text { exists } \\ 0 & \text { if } i=j \\ \infty & \text { else }\end{cases}\)
Interpretation:
\(\overline{W_{i j}}\) is the distance from vertex \(i\) to vertex \(j\) using maximally 1 edge

Note: Matrix W has entries corresponding to infinity, as it might be impossible to reach vertex j from vertex i via 1 edge.

We assume all weights are not negative, i.e., larger or equal to 0.

\section*{A modified Matrix-Matrix Multiplication}
\[
\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 2 & 4 \\
3 & 1 & 2
\end{array}\right) \odot\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 2 \\
1 & 2 & 5
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 2 \\
2 & 3 & 4 \\
3 & 4 & 3
\end{array}\right)
\]
\[
M \odot N=R
\]

\section*{Definition:}
\[
r_{i j}=\min _{k}\left\{m_{i k}+n_{k j}\right\}
\]

Example:
\[
\overline{r_{33}=\min }\{3+3,1+2,2+5\}=3
\]

Note: this operation is very similar to the standard matrix-matrix multiplication: however, for computation of the ij-th entry the multiplication is replaced by addition, and addition is replaced by the minimum operation.

\section*{Theorem:}

If \(G\) is a weighted graph with edge weight matrix \(W\), and vertices with indices \(1, \ldots, n\) then for each positive integer \(k\)
\[
\text { the } i j \text {-th entry of } W^{k}=\underbrace{W \odot W \odot \ldots \odot W}_{k \text { times }}
\]
the length of the shortest path from \(i\) to \(j\) using maximally \(k\) edges


\section*{Examples:}

Consider the two vertices with index 4 and 1 in \(W^{4}\) Shortest Path using maximally 4 edges:
4 -> 6 -> 3 -> 2 -> 1 (distance 7)

Consider the two vertices with index 5 and 3 in \(W^{4}\) Shortest Path using maximally 4 edges:
5 -> 1 -> 2 -> 3 (distance 5)
\(\left.W^{2}=\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6\end{array}\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 3 & 8 & 2 & \infty \\ 1 & 0 & 2 & 10 & 3 & 5 \\ 3 & 2 & 0 & 4 & 6 & 3 \\ 8 & 10 & 4 & 0 & 6 & 1 \\ 2 & 3 & 6 & 6 & 0 & 7 \\ \infty & 5 & 3 & 1 & 7 & 0\end{array}\right) \quad W^{3}=\begin{array}{c}1 \\ 2\end{array}\right)\left(\begin{array}{ccccc}1 \\ 2 & 1 & 3 & 8 & 2 \\ 2 \\ 1 & 0 & 2 & 6 & 3 \\ 3 \\ 4 & 2 & 0 & 4 & 5 \\ 3 \\ 5 & 6 & 4 & 0 & 6 \\ 5 \\ 2 & 3 & 5 & 6 & 0 \\ 6 \\ 6 & 5 & 3 & 1 & 7 \\ 7\end{array}\right)\)
\(W^{4}=\)\begin{tabular}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{tabular}\(\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 3 & 7 & 2 & 6 \\
1 & 0 & 2 & 6 & 3 & 5 \\
3 & 2 & 0 & 4 & 5 & 3 \\
7 & 6 & 4 & 0 & 6 & 1 \\
2 & 3 & 5 & 6 & 0 & 7 \\
6 & 5 & 3 & 1 & 7 & 0\end{array}\right)\)

\section*{Matrix-Matrix Multiplication in Java (for Square Matrices)}
```

// Assume M and N are both square (size x size) matrices
public static int[][] multiplySquared(int[][] M, int[][] N) {
int size = M.length;
// In Java, all values are initialized to 0
int[][] C = new int[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = 0; k < size; k++) {
C[i][j] += M[i][k] * N[k][j];
}
}
}
return C;
}

```

\section*{Modified Matrix-Matrix Multiplication in Java (for Square Matrices)}
```

public static int[][] multiplyModSquared(int[][] M, int[][] N) {
int inf = Integer.MAX_VALUE;
int size = M.length;
int[][] C = new int[size][size];
for (int i = 0; i < size; i++) {
for (int j=0; j< size; j++) {
C[i][j] = inf;
}
}
int add;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k = 0; k < size; k++) {
if (M[i][k] == inf || N[k][j] == inf)
C[i][j] = Math.min(C[i][j], inf);
else
C[i][j] = Math min(C[i][j],M[i][k]+N[k][j]);
}
}
}
return C;
}

```

\section*{Standard Matrix-}

Matrix Multiplication:
```

// Assume M and N are both square (size x size) matrices
public static int[][] multiplySquared(int[][] M, int[][] N) {
int size = M.length;
// In Java, all values are initialized to 0
int[][] C = new int[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
for (int k=0; k < size; k++) {
C[i][j] += M[i][k] * N[k][j];
}
}
}
return C;

```

\section*{In Java}
```

public static void main(String[] args) {
int inf = Integer.MAX_VALUE;
int[][] W = {{ 0, 1, inf, inf, 2, inf},
{ 1, 0, 2, inf, 4, inf},
{ inf, 2, 0, inf, inf, 3},
{ inf, inf, inf, 0, 6, 1},
{ 2, 4, inf, 6, 0, inf},
{ inf, inf, 3, 1, inf, 0}};
int size = W.length;
int[][] R = W.clone();
System.out.println("Initial Matrix W :");
printMatrix(W);
for (int i = 2; i < 5; i++) {
System.out.println(i+"-th modified power of W :");
R = multiplyModSquared(W, R);
printMatrix(R);
}
}

```


Provided Code: ShortestPaths.java
Note: Java has no explicit support for infinity for Integers (but for floating point values)


\[
W \neq W^{2} \neq W^{3} \neq W^{4}=W^{5}=W^{6}=\ldots
\]

Which value of \(k\) is necessary, in order to have \(W^{k}\) contain all the pairwise distances of all vertexes?

Answer: \(n-1\) (which is identical to \(|V|-1\) )
Assume all edge weights are not negative. The number of edges needed for a shortest path can maximally be \(n-1\), where \(n\) is the number of vertices in the graph. If the path would go via \(n\) edges, then you would have to visit at least one vertex twice, but then the path cannot be a shortest path anymore. Obviously \(W^{k}=W^{n-1}\) for all \(\mathrm{k}>\mathrm{n}-1\).


Lemma:
If \(G\) is a weighted graph with edge weight matrix \(W\), and vertices with indices \(1, \ldots, n\) then
\[
\begin{gathered}
\text { the } i j \text {-th entry of } W^{n-1}=\underbrace{W \odot W \odot \ldots \odot W}_{n-1 \text { times }} \\
\text { is } \\
\text { the distance from } i \text { to } j
\end{gathered}
\]
\(D:=W^{n-1}\) is called the distance matrix of the graph G.

\section*{Computation of the Distance Matrix by Repeated Squaring}

n-2 matrix-matrix multiplication are needed in order to compute the distance matrix \(D=W^{n-1}\)

k matrix-matrix multiplication are needed (namely squaring a matrix \(k\) times) in order to compute the matrix \(W^{\left(2^{k}\right)}\)
\(2^{k}\) has to be larger or equal to \(n-1\), or equivalently, k has to be larger or equal to \(\log _{2}(n-1)\)

Example: Consider a graph \(G\) with 101 vertices. In order to compute the distance matrix \(\mathrm{D}=W^{100}\), the left approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring) requires only 7 matrix-matrix multiplications, as \(2^{7}=128\), and \(D=W^{128}=W^{100}\)
public static void main(String[] args) \{
Random ran = new Random();
long t1, t2;
int size \(=300\);
int [][]\(W=\) new int[size][size];
for (int \(i=0 ; i<W\). length; i++) \{
for (int \(j=i ; j<W[0]\). length; \(j++\) ) \{
int \(r=r a n\).nextInt(10);
\(W[i][j]=r\);
\(W[j][i]=r ;\)
\}
\}
// make a copy of the edge weight matrix \(W\)
int \(][]\) R = W.clone();
System.out.println(String.format("Comparing runtimes for distance matrix computation for matrices of size \%d \(x \% d\) ",size,size));
// find the distance matrix by \((n-2)\) subsequent matrix matrix multiplications
\(/ / R=((C W * W) * W) * \ldots * W)=W \wedge(n-1)\)
t1 = System. currentTimeMillis();
for (int \(i=0 ; i<\operatorname{size}-2 ; i++\) )
R = multiplyModSquared (R,W);
t2 = System. currentTimeMillis();
System.out.println(String.format("The n-2 multiplications took \%3.2f seconds",((t2-t1)/1000.0)));
// set the R=W (re-initialize)
R = W.clone();
// find the distance matrix by ceil(log_2(n-1)) subsequent matrix matrix
// mulitplications via repeated squaring \(R=\left(\left((W \wedge 2)^{\wedge} 2\right)^{\wedge 2} . . .\right)^{\wedge 2}\)
t1 = System. currentTimeMillis();
for (int i=0; i < Math.ceil( Math. log(size-1) / Math. \(\log (2)\) ); i++)
\(\mathrm{R}=\) multiplyModSquared \((\mathrm{R}, \mathrm{R})\);
t2 = System. currentTimeMillis();
System.out.println(String.format("The ceil(log_2(n-1)) multiplications took \%3.2f seconds", ((t2-t1)/1000.0)));
Reminder: \(\quad \log _{2}(x)=\frac{\log (x)}{\log (2)}\)
\(\}\)
Eule:java daniel\$ java Timing
Comparing runtimes for distance matrix computation for matrices of size \(300 \times 300\)
Provided Code: timing.py
The n-2 multiplications took 15.37 seconds
The ceil(log_2(n-1)) multiplications took 0.47 seconds

The most obvious Application of Computing the Distance Matrix:


\section*{Another Application of the Distance Matrix: Predicting Boiling Points of Paraffins}

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the boiling point of different paraffins. He used the graph representation \(G\) of the carbon backbone of a molecule with \(n\) carbon atoms and calculated the WienerIndex the sum of all distances between all pairs of vertexes, i.e.
\[
\mathcal{W}(G)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{i j}
\]

He predicted the boiling point \(t_{B}\) to be
\[
\begin{aligned}
t_{B} & =t_{0}-\left(\frac{98}{n^{2}}\left(w_{0}-\mathcal{W}(G)\right)+5.5 \cdot\left(p_{0}-p\right)\right) \\
\text { with } t_{0} & =745.42 \cdot \log _{10}(n+4.4)-689.4 \\
w_{0} & =\frac{1}{6} \cdot(n+1) \cdot n \cdot(n-1) \\
p_{0} & =n-3 \\
p & =\text { the number of shortest paths } i \rightarrow \ldots \rightarrow j \text { of length } 3 \text { in } G \text { with } i<j \\
& =\text { half of the number of entries " } 3 \text { " in the distance matrix } D
\end{aligned}
\]

\section*{Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)}


The chemical compound


The carbon backbone


Graph G


Edge Weight Matrix
Note: Depending on how you chose to label your graph, the edge weight matrix might look different. This won't matter for the subsequent calculations.
\[
\begin{aligned}
\mathcal{W}(G) & =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{i j}=28 \\
t_{0} & =68.72 \\
w_{0} & =\frac{1}{6} \cdot 5 \cdot 6 \cdot 7=35 \\
p_{0} & =6-3=3 \\
p & =3
\end{aligned}
\]
\[
\begin{aligned}
t_{B} & =t_{0}-\left(\frac{98}{n^{2}}\left(w_{0}-\mathcal{W}(G)\right)+5.5 \cdot\left(p_{0}-p\right)\right) \\
& =68.72-\frac{98}{36}(35-28)-5.5 \cdot(3-3) \\
& =49.66
\end{aligned}
\]

Calculation of Wiener Index and other parameters, as well as the resulting boiling point prediction.

\section*{Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)}


Predicted Boiling Point: \(t_{B}=49.66\)
Real Boiling Point: \(t_{B}^{\text {real }} \approx 49.7-50.0\)

The prediction of boiling points of paraffins based on the Wiener-Index of the corresponding molecular graph is amazingly accurate. Try it yourself (see exercises)! Intuitively, the Wiener-Index quantifies the "compactness" of a graph (or molecule). Long single chained molecules with n carbons have a larger Wiener-Index than molecules that contain many branches. Long molecules tend to align nicely, and have therefore usually a higher boiling point.
```

