Cryptography, Number Theory, and RSA

Joan Boyar, IMADA, University of Southern Denmark

November/December 2020

Outline

- Symmetric key cryptography
- Public key cryptography
- Introduction to number theory
- RSA
- Digital signatures with RSA
- Combining symmetric and public key systems
- Modular exponentiation
- Greatest common divisor
- Primality testing
- Correctness of RSA

Cryptology

Cryptology $=$ cryptography + cryptanalysis

Cryptology

Cryptology $=$ cryptography + cryptanalysis
Cryptography is necessary for security, but not sufficient

Caesar cipher $($ With key $=3)$

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

P	Q	R	S	T	U	V	W	X	Y	Z	Æ	\varnothing	\AA
15	16	17	18	19	20	21	22	23	24	25	26	27	28
S	T	U	V	W	X	Y	Z	Æ	\varnothing	\AA	A	B	C
18	19	20	21	22	23	24	25	26	27	28	0	1	2

$$
E(m)=m+3(\bmod 29)
$$

Symmetric key systems

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet. The key is unknown. What does it say?
$Z Q O \emptyset Q O \emptyset, R I$.

Symmetric key systems

Suppose the following was encrypted using a Caesar cipher and the Danish alphabet. The key is unknown. What does it say?
$Z Q O \emptyset Q O \emptyset, R I$.

What does this say about how many keys should be possible?

Symmetric key systems (block ciphers)

- Caesar Cipher
- Enigma
- DES
- Blowfish
- IDEA
- Triple DES
- AES

Public key cryptography

Bob -2 keys $-P K_{B}, S K_{B}$
PK K_{B} - Bob's public key $S K_{B}$ - Bob's private (secret) key

For Alice to send m to Bob, Alice computes: $c=E\left(m, P K_{B}\right)$.

To decrypt c, Bob computes:
$r=D\left(c, S K_{B}\right)$.
$r=m$

Public key cryptography

Bob -2 keys $-P K_{B}, S K_{B}$
PK K_{B} - Bob's public key
$S K_{B}$ - Bob's private (secret) key
For Alice to send m to Bob,
Alice computes: $c=E\left(m, P K_{B}\right)$.
To decrypt c, Bob computes:
$r=D\left(c, S K_{B}\right)$.
$r=m$
It must be "hard" to compute m from $\left(c, P K_{B}\right)$.

Public key cryptography

Bob -2 keys $-P K_{B}, S K_{B}$
PK K_{B} - Bob's public key
$S K_{B}$ - Bob's private (secret) key
For Alice to send m to Bob,
Alice computes: $c=E\left(m, P K_{B}\right)$.
To decrypt c, Bob computes:
$r=D\left(c, S K_{B}\right)$.
$r=m$
It must be "hard" to compute m from $\left(c, P K_{B}\right)$.
It must be "hard" to compute $S K_{B}$ from $P K_{B}$.

Introduction to Number Theory

Definition. Suppose $a, b \in \mathbb{Z}$, $a>0$.
Suppose $\exists c \in \mathbb{Z}$ s.t. $b=a c$. Then a divides b.
$a \mid b$.
a is a factor of b.
b is a multiple of a.
$e \nmid f$ means e does not divide f.
Theorem. $a, b, c \in \mathbb{Z}$. Then

1. if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$
2. if $a \mid b$, then $a \mid b c \forall c \in \mathbb{Z}$
3. if $a \mid b$ and $b \mid c$, then $a \mid c$.

Definition. $p \in \mathbb{Z}, p>1$.
p is prime if 1 and p are the only positive integers which divide p.
$2,3,5,7,11,13,17, \ldots$
p is composite if it is not prime.
$4,6,8,9,10,12,14,15,16, \ldots$

Theorem. $a \in \mathbb{Z}, d \in \mathbb{N}$
\exists unique $q, r, 0 \leq r<d$ s.t. $a=d q+r$

$$
\begin{aligned}
& d \text { - divisor } \\
& a \text { - dividend } \\
& q \text { - quotient } \\
& r \text { - remainder }=a \bmod d
\end{aligned}
$$

Definition. $\operatorname{gcd}(a, b)=$ greatest common divisor of a and b
$=\operatorname{largest} d \in \mathbb{Z}$ s.t. $d \mid a$ and $d \mid b$
If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.

Definition. $a \equiv b(\bmod m)-a$ is congruent to b modulo m if $m \mid(a-b)$.
$m \mid(a-b) \Rightarrow \exists k \in \mathbb{Z}$ s.t. $a=b+k m$.
Theorem. $a \equiv b(\bmod m) \quad c \equiv d(\bmod m)$
Then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$.

Proof.(of first) $\exists k_{1}, k_{2}$ s.t.

$$
\begin{array}{r}
a=b+k_{1} m \quad c=d+k_{2} m \\
a+c \quad=b+k_{1} m+d+k_{2} m \\
=b+d+\left(k_{1}+k_{2}\right) m
\end{array}
$$

Definition. $a \equiv b(\bmod m)-a$ is congruent to b modulo m if $m \mid(a-b)$.
$m \mid(a-b) \Rightarrow \exists k \in \mathbb{Z}$ s.t. $a=b+k m$.

Examples.

1. $15 \equiv 22(\bmod 7)$?
$15=22(\bmod 7) ?$
2. $15 \equiv 1(\bmod 7)$?
$15=1(\bmod 7)$?
3. $15 \equiv 37(\bmod 7)$?
$15=37(\bmod 7)$?
4. $58 \equiv 22(\bmod 9)$?
$58=22(\bmod 9) ?$

RSA — a public key system

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right) \\
& \quad P K_{A}=\left(N_{A}, e_{A}\right) \\
& \quad S K_{A}=\left(N_{A}, d_{A}\right)
\end{aligned}
$$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$. $r=m$.

RSA - a public key system

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$r=m$.
Example: $p=5, q=11, e=3, d=27, m=8$.
Then $N=55 . e \cdot d=81$. So $e \cdot d \equiv 1(\bmod 4 \cdot 10)$.
To encrypt $m: c=8^{3}(\bmod 55)=17$.
To decrypt $c: r=17^{27}(\bmod 55)=8$.

Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:

- No one else could forge her signature
- It is easy for others to verify her signature

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, such that:

- For any message $m^{\prime}, h\left(m^{\prime}\right)$ has a fixed length (512 bits?)
- It is "hard" for anyone to find 2 messages $\left(m_{1}, m_{2}\right)$ such that $h\left(m_{1}\right)=h\left(m_{2}\right)$.

Digital Signatures with RSA

Then Alice "decrypts" $h(m)$ with her secret RSA key $\left(N_{A}, d_{A}\right)$

$$
s=(h(m))^{d_{A}}\left(\bmod N_{A}\right)
$$

Bob verifies her signature using her public RSA key $\left(N_{A}, e_{A}\right)$ and h :

$$
c=s^{e_{A}}\left(\bmod N_{A}\right)
$$

He accepts if and only if

$$
h(m)=c
$$

This works because $s^{e_{A}}\left(\bmod N_{A}\right)=$

$$
\left((h(m))^{d_{A}}\right)^{e_{A}}\left(\bmod N_{A}\right)=\left((h(m))^{e_{A}}\right)^{d_{A}}\left(\bmod N_{A}\right)=h(m)
$$

Combining symmetric and public key systems

Problem: Public key systems are slow!

Combining symmetric and public key systems

Problem: Public key systems are slow!
Solution: Use symmetric key system for large message.
Encrypt only session key with public key system.

Combining symmetric and public key systems

Problem: Public key systems are slow!
Solution: Use symmetric key system for large message.
Encrypt only session key with public key system.
To encrypt a message m to send to Bob:

- Choose a random session key k for a symmetric key system (AES?)
- Encrypt k with Bob's public key - Result k_{e}
- Encrypt m with k - Result m_{e}
- Send k_{e} and m_{e} to Bob

Combining symmetric and public key systems

Problem: Public key systems are slow!
Solution: Use symmetric key system for large message.
Encrypt only session key with public key system.
To encrypt a message m to send to Bob:

- Choose a random session key k for a symmetric key system (AES?)
- Encrypt k with Bob's public key - Result k_{e}
- Encrypt m with k - Result m_{e}
- Send k_{e} and m_{e} to Bob

How does Bob decrypt? Why is this efficient?

Combining symmetric and public key systems

Security of RSA

The primes p_{A} and q_{A} are kept secret with d_{A}.
Suppose Eve can factor N_{A}.
Then she can find p_{A} and q_{A}.
From them and e_{A}, she finds d_{A}.
Then she can decrypt just like Alice.
Factoring must be hard!

Factoring

Theorem. N composite $\Rightarrow N$ has a prime divisor $\leq \sqrt{N}$
Factor (N)
for $i=2$ to \sqrt{N} do
check if i divides N
if it does then output ($i, N / i$)
endfor
output -1 if divisor not found
Corollary There is an algorithm for factoring N (or testing primality) which does $O(\sqrt{N})$ tests of divisibility.

Factoring

Check all possible divisors between 2 and \sqrt{N}.
Not finished in your grandchildren's life time for N with 2048 bits.
Problem The length of the input is $n=\left\lceil\log _{2}(N+1)\right\rceil$. So the running time is $O\left(2^{n / 2}\right)$ - exponential.

Open Problem Does there exist a polynomial time factoring algorithm?

Use primes which are at least 1024 (or 2048) bits long.
So $2^{1023} \leq p_{A}, q_{A}<2^{1024}$.
So $p_{A} \approx 10^{308}$.

How do we implement RSA?
We need to find: $p_{A}, q_{A}, N_{A}, e_{A}, d_{A}$.
We need to encrypt and decrypt.

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication

Modular Exponentiation

Theorem. For all nonnegative integers, b, c, m, $b \cdot c(\bmod m)=(b(\bmod m)) \cdot(c(\bmod m))(\bmod m)$.

Example: $a \cdot a^{2}(\bmod n)=(a(\bmod n))\left(a^{2}(\bmod n)\right)(\bmod n)$.

$$
\begin{aligned}
8^{3}(\bmod 55) & =8 \cdot 8^{2}(\bmod 55) \\
& =8 \cdot 64(\bmod 55) \\
& =8 \cdot(9+55)(\bmod 55) \\
& =72+(8 \cdot 55)(\bmod 55) \\
& =17+55+(8 \cdot 55)(\bmod 55) \\
& =17
\end{aligned}
$$

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults Guess: $k-1$ modular multiplications.

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod \operatorname{mults}$ Guess: $k-1$ modular multiplications.

This is too many! $e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$. p_{A} and q_{A} have ≥ 1024 bits each. So at least one of e_{A} and d_{A} has ≥ 1024 bits.

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults Guess: $k-1$ modular multiplications.

This is too many!
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.
p_{A} and q_{A} have ≥ 1024 bits each.
So at least one of e_{A} and d_{A} has ≥ 1024 bits.
To either encrypt or decrypt would need $\geq 2^{1023} \approx 10^{308}$ operations (more than number of atoms in the universe).

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults How do you calculate $a^{4}(\bmod n)$ in less than 3 ?

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod \operatorname{mults}$ How do you calculate $a^{4}(\bmod n)$ in less than 3 ?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults How do you calculate $a^{4}(\bmod n)$ in less than 3?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults
In general: $a^{2 s}(\bmod n)$?

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults
How do you calculate $a^{4}(\bmod n)$ in less than 3?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults
In general: $a^{2 s}(\bmod n)$?
$a^{2 s}(\bmod n) \equiv\left(a^{s}(\bmod n)\right)^{2}(\bmod n)$

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1 \operatorname{modular}$ multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod \operatorname{mults}$
How do you calculate $a^{4}(\bmod n)$ in less than 3 ?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults
$a^{2 s}(\bmod n) \equiv\left(a^{s}(\bmod n)\right)^{2}(\bmod n)$
In general: $a^{2 s+1}(\bmod n)$?

RSA - encryption/decryption

We need to encrypt and decrypt: compute $a^{k}(\bmod n)$.
$a^{2}(\bmod n) \equiv a \cdot a(\bmod n)-1$ modular multiplication
$a^{3}(\bmod n) \equiv a \cdot(a \cdot a(\bmod n))(\bmod n)-2 \bmod$ mults
How do you calculate $a^{4}(\bmod n)$ in less than 3 ?
$a^{4}(\bmod n) \equiv\left(a^{2}(\bmod n)\right)^{2}(\bmod n)-2 \bmod$ mults
$a^{2 s}(\bmod n) \equiv\left(a^{s}(\bmod n)\right)^{2}(\bmod n)$
$a^{2 s+1}(\bmod n) \equiv a \cdot\left(\left(a^{s}(\bmod n)\right)^{2}(\bmod n)\right)(\bmod n)$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$ $c \leftarrow \operatorname{Exp}(3,3,7)$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7)(\bmod 7))$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$ $c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7))(\bmod 7))$
$c^{\prime} \leftarrow \operatorname{Exp}(3,1,7)$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7))(\bmod 7))$
$c^{\prime} \leftarrow \operatorname{Exp}(3,1,7) \leftarrow 3$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7))(\bmod 7))$
$c^{\prime} \leftarrow \operatorname{Exp}(3,1,7) \leftarrow 3$
$\operatorname{Exp}(3,2,7)(\bmod 7)) \leftarrow 3 \cdot 3(\bmod 7) \leftarrow 2$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7))(\bmod 7))$
$c^{\prime} \leftarrow \operatorname{Exp}(3,1,7) \leftarrow 3$
$\operatorname{Exp}(3,2,7)(\bmod 7)) \leftarrow 3 \cdot 3(\bmod 7) \leftarrow 2$
$c \leftarrow 3 \cdot 2(\bmod 7) \leftarrow 6$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

```
c\leftarrowExp(a,k/2,n)
return((c\cdotc) (mod n))
```

To compute $3^{6}(\bmod 7): \operatorname{Exp}(3,6,7)$
$c \leftarrow \operatorname{Exp}(3,3,7) \leftarrow 3 \cdot(\operatorname{Exp}(3,2,7))(\bmod 7))$
$c^{\prime} \leftarrow \operatorname{Exp}(3,1,7) \leftarrow 3$
$\operatorname{Exp}(3,2,7)(\bmod 7)) \leftarrow 3 \cdot 3(\bmod 7) \leftarrow 2$
$c \leftarrow 3 \cdot 2(\bmod 7) \leftarrow 6$
$\operatorname{Exp}(3,6,7) \leftarrow(6 \cdot 6)(\bmod 7) \leftarrow 1$

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \text { return }((c \cdot c)(\bmod n))
\end{aligned}
$$

How many modular multiplications?

Modular Exponentiation

$\operatorname{Exp}(a, k, n) \quad\left\{\right.$ Compute $\left.a^{k}(\bmod n)\right\}$
if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

$$
\begin{aligned}
& c \leftarrow \operatorname{Exp}(a, k / 2, n) \\
& \operatorname{return}((c \cdot c)(\bmod n))
\end{aligned}
$$

How many modular multiplications?
Divide exponent by 2 every other time. How many times can we do that?

Modular Exponentiation

$$
\operatorname{Exp}(a, k, n) \quad\left\{\text { Compute } a^{k}(\bmod n)\right\}
$$

if $k<0$ then report error
if $k=0$ then return(1)
if $k=1$ then return $(a(\bmod n))$
if k is odd then return $(a \cdot \operatorname{Exp}(a, k-1, n)(\bmod n))$
if k is even then

```
c\leftarrowExp(a,k/2,n)
return((c\cdotc) (mod n))
```

How many modular multiplications?
Divide exponent by 2 every other time. How many times can we do that?
$\left\lfloor\log _{2}(k)\right\rfloor$
So at most $2\left\lfloor\log _{2}(k)\right\rfloor$ modular multiplications.

RSA — a public key system

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.
$-P K_{A}=\left(N_{A}, e_{A}\right)$

- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$r=m$.
Try using $N=35, e=11$ to create keys for RSA.
What is d ? Try $d=11$ and check it.
Encrypt 4. Decrypt the result.

RSA - a public key system

$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.
$\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
$e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

- $P K_{A}=\left(N_{A}, e_{A}\right)$
- $S K_{A}=\left(N_{A}, d_{A}\right)$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$.
$r=m$.
Try using $N=35$, $e=11$ to create keys for RSA.
What is d ? Try $d=11$ and check it.
Encrypt 4. Decrypt the result.
Did you get $c=9$? And $r=4$?
$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right) \\
& \quad P K_{A}=\left(N_{A}, e_{A}\right) \\
& -S K_{A}=\left(N_{A}, d_{A}\right)
\end{aligned}
$$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$. $r=m$.

Greatest Common Divisor

We need to find: e_{A}, d_{A}.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)
\end{aligned}
$$

Greatest Common Divisor

We need to find: e_{A}, d_{A}.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)
\end{aligned}
$$

Choose random e_{A}.
Check that $\operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1$.
Find d_{A} such that $e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right)$.

The Extended Euclidean Algorithm

Theorem. $a, b \in \mathbb{N} . \exists s, t \in \mathbb{Z}$ s.t. $s a+t b=\operatorname{gcd}(a, b)$.
Proof. Let d be the smallest positive integer in
$D=\{x a+y b \mid x, y \in \mathbb{Z}\}$.
$d \in D \Rightarrow d=x^{\prime} a+y^{\prime} b$ for some $x^{\prime}, y^{\prime} \in \mathbb{Z}$.
$\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$, so $\operatorname{gcd}(a, b)\left|x^{\prime} a, \operatorname{gcd}(a, b)\right| y^{\prime} b$, and $\operatorname{gcd}(a, b) \mid\left(x^{\prime} a+y^{\prime} b\right)=d$. We will show that $d \mid \operatorname{gcd}(a, b)$, so $d=\operatorname{gcd}(a, b)$. Note $a \in D$.
Suppose $a=d q+r$ with $0 \leq r<d$.

$$
\begin{aligned}
r & =a-d q \\
& =a-q\left(x^{\prime} a+y^{\prime} b\right) \\
& =\left(1-q x^{\prime}\right) a-\left(q y^{\prime}\right) b
\end{aligned}
$$

$$
\Rightarrow r \in D
$$

$$
r<d \Rightarrow r=0 \Rightarrow d \mid a
$$

Similarly, one can show that $d \mid b$.
Therefore, $d \mid \operatorname{gcd}(a, b)$.

The Extended Euclidean Algorithm

How do you find d, s and t ?
Let $d=\operatorname{gcd}(a, b)$. Write b as $b=a q+r$ with $0 \leq r<a$.
Then, $d|b \Rightarrow d|(a q+r)$.
Also, $d|a \Rightarrow d|(a q) \Rightarrow d|((a q+r)-a q) \Rightarrow d| r$.
Let $d^{\prime}=\operatorname{gcd}(a, b-a q)$.
Then, $d^{\prime}\left|a \Rightarrow d^{\prime}\right|(a q)$
Also, $d^{\prime}\left|(b-a q) \Rightarrow d^{\prime}\right|((b-a q)+a q) \Rightarrow d^{\prime} \mid b$.
Thus, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b(\bmod a))$
$=\operatorname{gcd}(b(\bmod a), a)$. This shows how to reduce to a "simpler" problem and gives us the Extended Euclidean Algorithm.

The Extended Euclidean Algorithm

\{ Initialize\}

$$
\begin{array}{lll}
d_{0} \leftarrow b & s_{0} \leftarrow 0 & t_{0} \leftarrow 1 \\
d_{1} \leftarrow a & s_{1} \leftarrow 1 & t_{1} \leftarrow 0 \\
n \leftarrow 1 & &
\end{array}
$$

$\{$ Compute next d \} while $d_{n}>0$ do
begin

$$
\begin{aligned}
& n \leftarrow n+1 \\
& \left\{\text { Compute } d_{n} \leftarrow d_{n-2}\left(\bmod d_{n-1}\right)\right\} \\
& q_{n} \leftarrow\left\lfloor d_{n-2} / d_{n-1}\right\rfloor \\
& d_{n} \leftarrow d_{n-2}-q_{n} d_{n-1} \\
& s_{n} \leftarrow s_{n-2}-q_{n} s_{n-1} \\
& t_{n} \leftarrow t_{n-2}-q_{n} t_{n-1}
\end{aligned}
$$

end

$$
\begin{aligned}
& s \leftarrow s_{n-1} \\
& \operatorname{gcd}(a, b) \leftarrow d_{n-1}
\end{aligned} \quad t \leftarrow t_{n-1}
$$

The Extended Euclidean Algorithm

Finding multiplicative inverses modulo m :
Given a and m, find x s.t. $a \cdot x \equiv 1(\bmod m)$.
Should also find a k, s.t. $a x=1+k m$.
So solve for an s in an equation $s a+t m=1$.
This can be done if $\operatorname{gcd}(a, m)=1$. Just use the Extended Euclidean Algorithm.

If the result, s, is negative, add m to s.
Now $(s-m) a+t m \equiv 1(\bmod m)$.

Examples

Calculate the following:

1. $\operatorname{gcd}(6,9)$
2. s and t such that $s \cdot 6+t \cdot 9=\operatorname{gcd}(6,9)$
3. $\operatorname{gcd}(15,23)$
4. s and t such that $s \cdot 15+t \cdot 23=\operatorname{gcd}(15,23)$
$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right) \\
& \quad P K_{A}=\left(N_{A}, e_{A}\right) \\
& -S K_{A}=\left(N_{A}, d_{A}\right)
\end{aligned}
$$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$. $r=m$.

Primality testing

We need to find: p_{A}, q_{A} - large primes.
Choose numbers at random and check if they are prime?

Questions

1. How many random integers of length 1024 are prime?

Questions

1. How many random integers of length 1024 are prime?

Prime Number Theorem: About $\frac{x}{\ln x}$ numbers $<x$ are prime, so about $\frac{2^{1024}}{709}$

So we expect to test about 709 before finding a prime with 1024 bits.
(This holds because the expected number of tries until a "success", when the probability of "success" is p, is $1 / p$.)

Questions

1. How many random integers of length 1024 are prime?

About $\frac{x}{\ln x}$ numbers $<x$ are prime, so about $\frac{2^{1024}}{709}$
So we expect to test about 709 before finding a prime.
2. How fast can we test if a number is prime?

Questions

1. How many random integers of length 1024 are prime?

About $\frac{x}{\ln x}$ numbers $<x$ are prime, so about $\frac{2^{1024}}{709}$
So we expect to test about 709 before finding a prime.
2. How fast can we test if a number is prime?

Quite fast, using randomness.

Method 1

Sieve of Eratosthenes:
Lists:
$\begin{array}{llllllllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$

Method 1

Sieve of Eratosthenes:
Lists:

$$
\begin{array}{llllllllllllllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
& 3 & & 5 & & 7 & & 9 & & 11 & & 13 & & 15 & & 17 & & 19
\end{array}
$$

Method 1

Sieve of Eratosthenes:
Lists:

$$
\begin{array}{llllllllllllllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
& 3 & & 5 & & 7 & & 9 & & 11 & & 13 & & 15 & & 17 & & 19 \\
& & & 5 & & 7 & & & & 11 & & 13 & & & & 17 & & 19
\end{array}
$$

Method 1

Sieve of Eratosthenes:
Lists:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	3		5		7		9		11		13		15		17		19
			5		7				11		13				17		19
					7				11		13				17		19

10^{308} - more than number of atoms in universe
So we cannot even write out this list!

Method 2

CheckPrime (n)
for $i=2$ to $n-1$ do
check if i divides n
if it does then output i
endfor
output - 1 if divisor not found

Check all possible divisors between 2 and n (or \sqrt{n}). Our sun will die before we're done!

Rabin-Miller Primality Testing

In practice, use a randomized primality test.
Miller-Rabin primality test:
Starts with Fermat test:

$$
2^{14}(\bmod 15) \equiv 4 \neq 1
$$

So 15 is not prime.
Fermat's Little Theorem. Suppose p is a prime. Then for all $1 \leq a \leq p-1, a^{p-1}(\bmod p)=1$.

Rabin-Miller Primality Test

Fermat test:
Prime (n)
repeat r times
Choose random $a \in\{1,2, \ldots, n-1\}$
if $a^{n-1}(\bmod n) \not \equiv 1$ then return(Composite)
end repeat
return(Probably Prime)
Carmichael Numbers Composite n.
For all $a \in\{1,2, \ldots, n-1\}$ s.t. $\operatorname{gcd}(a, n)=1, a^{n-1}(\bmod n) \equiv 1$.
Example: $561=3 \cdot 11 \cdot 17$
Theorem.
If p is prime, $\sqrt{1}(\bmod p)=\left\{x \mid x^{2}(\bmod p)=1\right\}=\{1, p-1\}$.
If p has >1 distinct factors, 1 has at least 4 square roots.
Example: $\sqrt{1}(\bmod 15)=\{1,4,11,14\}$

Rabin-Miller Primality Test

Taking square roots of $1(\bmod 561)$:
$50^{560}(\bmod 561) \equiv 1$
$50^{280}(\bmod 561) \equiv 1$
$50^{140}(\bmod 561) \equiv 1$
$50^{70}(\bmod 561) \equiv 1$
$50^{35}(\bmod 561) \equiv 560$
$2^{560}(\bmod 561) \equiv 1$
$2^{280}(\bmod 561) \equiv 1$
$2^{140}(\bmod 561) \equiv 67$
2 is a witness that 561 is composite.

Rabin-Miller Primality Test

Miller-Rabin (n, r)
Calculate odd m such that $n-1=2^{s} \cdot m$ repeat r times

Choose random $a \in\{1,2, \ldots, n-1\}$
if $a^{n-1}(\bmod n) \not \equiv 1$ then return(Composite)
if $a^{(n-1) / 2}(\bmod n) \equiv n-1$ then continue
if $a^{(n-1) / 2}(\bmod n) \not \equiv 1$ then return(Composite)
if $a^{(n-1) / 4}(\bmod n) \equiv n-1$ then continue
if $a^{(n-1) / 4}(\bmod n) \not \equiv 1$ then return(Composite)
if $a^{m}(\bmod n) \equiv n-1$ then continue
if $a^{m}(\bmod n) \not \equiv 1$ then return(Composite)
end repeat
return(Probably Prime)

Rabin-Miller Primality Test

Theorem. If n is composite, at most $1 / 4$ of the a's with $1 \leq a \leq n-1$ will not end in "return(Composite)" during an iteration of the repeat-loop.

This means that with r iterations, a composite n will survive to "return(Probably Prime)" with probability at most $(1 / 4)^{r}$. For e.g. $r=100$, this is less than $(1 / 4)^{100}=1 / 2^{200}<1 / 10^{60}$.

A prime n will always survive to "return(Probably Prime)".

Conclusions about primality testing

1. Miller-Rabin is a practical primality test
2. There is a less practical deterministic primality test
3. Randomized algorithms are useful in practice
4. Algebra is used in primality testing
5. Number theory is not useless

Why does RSA work?

Thm (The Chinese Remainder Theorem) Let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise relatively prime. For any integers $x_{1}, x_{2}, \ldots, x_{k}$, there exists $x \in \mathbb{Z}$ s.t. $x \equiv x_{i}\left(\bmod n_{i}\right)$ for $1 \leq i \leq k$, and this integer is uniquely determined modulo the product $N=n_{1} n_{2} \ldots n_{k}$.

We consider the special case where $n_{1}=p$ and $n_{2}=q$ are two primes (hence $N=p q$), and where $x_{1}=x_{2}=m$.

Clearly, $m \equiv m(\bmod p)$ and $m \equiv m(\bmod q)$ for any m. So if x fulfills $x \equiv m(\bmod p)$ and $x \equiv m(\bmod q)$, then $x \equiv m(\bmod N)$.

In particular, $0 \leq x, m \leq N-1$, so we must have $x=m$.

Fermat's Little Theorem

Why does RSA work? CRT +
Fermat's Little Theorem: p is a prime, $p \nmid a$.
Then $a^{p-1} \equiv 1(\bmod p)$ and $a^{p} \equiv a(\bmod p)$.
$N_{A}=p_{A} \cdot q_{A}$, where p_{A}, q_{A} prime.

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{A},\left(p_{A}-1\right)\left(q_{A}-1\right)\right)=1 \\
& e_{A} \cdot d_{A} \equiv 1\left(\bmod \left(p_{A}-1\right)\left(q_{A}-1\right)\right) \\
& \quad P K_{A}=\left(N_{A}, e_{A}\right) \\
& -S K_{A}=\left(N_{A}, d_{A}\right)
\end{aligned}
$$

To encrypt: $c=E\left(m, P K_{A}\right)=m^{e_{A}}\left(\bmod N_{A}\right)$.
To decrypt: $r=D\left(c, S K_{A}\right)=c^{d_{A}}\left(\bmod N_{A}\right)$. $r=m$.

Correctness of RSA

Consider $x=D\left(E\left(m, P K_{A}\right), S K_{A}\right)$.
Note $\exists k$ s.t. $e_{A} d_{A}=1+k\left(p_{A}-1\right)\left(q_{A}-1\right)$.
$x \equiv\left(m^{e_{A}}\left(\bmod N_{A}\right)\right)^{d_{A}}\left(\bmod N_{A}\right) \equiv m^{e_{A} d_{A}} \equiv$
$m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)}\left(\bmod N_{A}\right)$.
Consider $x\left(\bmod p_{A}\right)$.
$x \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(p_{A}-1\right)}\right)^{k\left(q_{A}-1\right)} \equiv m \cdot 1^{k\left(q_{A}-1\right)} \equiv$ $m\left(\bmod p_{A}\right)$.

Consider $x\left(\bmod q_{A}\right)$.
$x \equiv m^{1+k\left(p_{A}-1\right)\left(q_{A}-1\right)} \equiv m \cdot\left(m^{\left(q_{A}-1\right)}\right)^{k\left(p_{A}-1\right)} \equiv m \cdot 1^{k\left(p_{A}-1\right)} \equiv$ $m\left(\bmod q_{A}\right)$.

Apply the Chinese Remainder Theorem:
$\operatorname{gcd}\left(p_{A}, q_{A}\right)=1, \Rightarrow x \equiv m\left(\bmod N_{A}\right)$.
So $D\left(E\left(m, P K_{A}\right), S K_{A}\right)=m$.

