Institut for Matematik og Datalogi 4. november 2020
Syddansk Universitet, Odense KSL/RF

Eksaminatorier DM534 /558 Uge 45/46

Husk principperne for timerne i opgaveregning i DM534/558: Opgaverne i
gruppe I lgser man i timerne med opgaveregning, sammen med de andre
i sin studiegruppe. Disse opgaver skal altsa ikke lgses pa forhand, og man
skal blot have laest pa stoffet fra forelsesningen inden timen i opgaveregning.
Opgaverne i gruppe II lgse man hjemme, sammen med sin studiegruppe,
inden de naeste gvelsestimer i ugen efter (her uge 46).

Husk at leese de relevante sider i slides for du/I forsgger at lgse en opgave.

I: Lgses i lgbet af gvelsestimerne i uge 45

1. Prove that no matter which other algorithm than the one from the
lecture notes we define for ski rental, the algorithm will perform worse,
i.e., the competitive ratio will be strictly higher than %.

Start by analyzing the algorithms “Buy on day 5” and “Buy on day
15” to see what happens. The skis still cost 10 units to buy and 1 unit
per day to rent.

2. For m = 3, which schedule does the List Scheduling algorithm, Ls,
produce on the following input sequence:

1 i 1 i

3. In the lecture, we proved that the machine scheduling algorithm, Ls,

could not perform better than 2 — % We now consider only two ma-

chines. Thus, m = 2, and the ratio is then % Just because Ls cannot

perform better, it could be that some other algorithm could. Prove
(for m = 2) that this is not the case. You must design an input, where
no algorithm, no matter what decisions it makes, can do better than
% times OPT. You only need sequences with two and three jobs and
a case analysis with only two cases, depending on what an algorithm
does with the second job that is given.

4. Consider the first bin packing example given in the lecture (slide 19),
where the First-Fit algorithm, FF, uses four bins. Show that OpT only
needs three.

5. How does the First-Fit algorithm, Fr, behave on the input sequence
below? Item sizes are given in multiples of %.

ledn] B e B e]

6. Why can the following configuration not have been produced by the
bin packing algorithm Fr? Item size are given in multiples of %.

|wl

II: Lgses hjemme inden gvelsestimerne i uge 46

1. For bin packing, one can prove the upper bound that Fr is 1.7-
competitive. However, this is a quite hard proof. In this exercise, we
will try to improve (raise) the lower bound.

In the lecture, we saw an example demonstrating that FF can be as

bad as % = 1.5 times OPT.

Let that example inspire you, and try to use items of the following

three sizes:
1 1 1 1 1 1

7 * 10007 3 * 10007 2 * 1000

Find a sequence where FF performs g times worse than OPT.

Now try using

1 1 1 1 1 1 1 1

43 * 10000" 7 * 100007 3 * 10000" 2 + 10000

to get a lower bound close to the 1.7 upper bound.

. It is very easy to implement FF in JAVA, if there are no efficiency
requirements: just use an array to hold the current level in the bins,
and for each item, search for the first bin with enough space. If you
make sure there are enough bins from the beginning, then there are
no special cases. And you simple count the number of non-empty bins
at the end to get the result.

Implement FF.
Try to define your own algorithm, from scratch or as a variant of FF.

Test your own algorithm up against FF and try to determine which
one is best; for instance on uniformly distributed sequences.

In Java, one way to create pseudorandom floating point num-
bers uniformly distributed in the interval [0,1[is via the class
java.util.Random and its NextFloat method. You may want to look
at the tutorial here: http://www.functionx.com/java/Lessonl8.
htm. If you want to generate the same sequence of pseudorandom num-
bers in different invocations of your program (for instance to compare
two algorithms on the same input sequences), you must set the seed in
the random number generator at the start of the program (otherwise
it is automatically set to a different seed at each invocation). This is
also described in the tutorial.

http://www.functionx.com/java/Lesson18.htm
http://www.functionx.com/java/Lesson18.htm

